Immediate-early gene expression in the brain of the thiamine-deficient rat. 1998

A S Hazell, and L McGahan, and W Tetzlaff, and A M Bedard, and G S Robertson, and Y Nakabeppu, and A M Hakim
Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec.

Pyrithiamine-induced thiamine deficiency (PTD) in the rat is associated with neuronal loss in the thalamus and inferior colliculus. Recently, we were able to demonstrate the occurrence of apoptosis in the thalamus of these animals. Given that immediate-early genes (IEGs) participate in signal transduction pathways that mediate programmed cell death, the present study utilized in situ hybridization and immunohistochemistry to examine the expression of four IEGs (c-fos, c-jun, fos-B, and NGFI-A) during the progression of PTD. Elevated c-fos mRNA levels were initially observed in the posterior medial thalamus on d 12 of the deficiency. At the acute symptomatic stage (characterized by a loss of righting reflex on d 16-17), the posterior-medial thalamus exhibited increased mRNA for all genes examined, whereas the inferior colliculus demonstrated mRNA induction for c-fos, c-jun, and NGFI-A. Immunohistochemical analysis revealed that elevations of IEG mRNA associated with the acute symptomatic stage were consistently translated into protein in the thalamus. In contrast, whereas elevated Fos- and Jun-like immunoreactivity were detected in the inferior colliculus at this stage, NGFI-A-like immunoreactivity declined significantly below basal levels, suggesting a translational block. These results are consistent with our recent findings of apoptotic cell death, and indicate that differential patterns of IEG expression occur in the thalamus and inferior colliculus during PTD, which may contribute to the pathogenesis of this disorder.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013832 Thiamine Deficiency A nutritional condition produced by a deficiency of THIAMINE in the diet, characterized by anorexia, irritability, and weight loss. Later, patients experience weakness, peripheral neuropathy, headache, and tachycardia. In addition to being caused by a poor diet, thiamine deficiency in the United States most commonly occurs as a result of alcoholism, since ethanol interferes with thiamine absorption. In countries relying on polished rice as a dietary staple, BERIBERI prevalence is very high. (From Cecil Textbook of Medicine, 19th ed, p1171) Deficiency, Thiamine,Deficiencies, Thiamine,Thiamine Deficiencies
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

A S Hazell, and L McGahan, and W Tetzlaff, and A M Bedard, and G S Robertson, and Y Nakabeppu, and A M Hakim
June 1992, Journal of neurochemistry,
A S Hazell, and L McGahan, and W Tetzlaff, and A M Bedard, and G S Robertson, and Y Nakabeppu, and A M Hakim
April 1993, Brain research,
A S Hazell, and L McGahan, and W Tetzlaff, and A M Bedard, and G S Robertson, and Y Nakabeppu, and A M Hakim
December 1993, Molecular and cellular neurosciences,
A S Hazell, and L McGahan, and W Tetzlaff, and A M Bedard, and G S Robertson, and Y Nakabeppu, and A M Hakim
September 1997, Biological psychiatry,
A S Hazell, and L McGahan, and W Tetzlaff, and A M Bedard, and G S Robertson, and Y Nakabeppu, and A M Hakim
July 1976, Research communications in chemical pathology and pharmacology,
A S Hazell, and L McGahan, and W Tetzlaff, and A M Bedard, and G S Robertson, and Y Nakabeppu, and A M Hakim
January 1978, Journal of nutritional science and vitaminology,
A S Hazell, and L McGahan, and W Tetzlaff, and A M Bedard, and G S Robertson, and Y Nakabeppu, and A M Hakim
June 2005, Brain research,
A S Hazell, and L McGahan, and W Tetzlaff, and A M Bedard, and G S Robertson, and Y Nakabeppu, and A M Hakim
February 1969, Nutrition reviews,
A S Hazell, and L McGahan, and W Tetzlaff, and A M Bedard, and G S Robertson, and Y Nakabeppu, and A M Hakim
November 1961, Journal of neurochemistry,
A S Hazell, and L McGahan, and W Tetzlaff, and A M Bedard, and G S Robertson, and Y Nakabeppu, and A M Hakim
August 1996, Journal of neurochemistry,
Copied contents to your clipboard!