Target contact regulates GAP-43 and alpha-tubulin mRNA levels in regenerating retinal ganglion cells. 1998

P Bormann, and V M Zumsteg, and L W Roth, and E Reinhard
Department of Pharmacology, Biozentrum, University of Basel, Switzerland.

Axotomy of vertebrate neurons leads to the transient upregulation of GAP-43 and alpha-tubulin. In adult zebrafish retina, mRNA levels of both genes were increased in retinal ganglion cells after optic nerve lesion following a similar time course. At 5 days after crush, the mRNA level of GAP-43 was increased nearly 20 times, whereas a 6-fold increase was observed for alpha-tubulin. Subsequently, upon target reinnervation, mRNA levels of both genes were downregulated and were 2-fold higher than normal at 25 days after crush. Stretching the optic nerve that results in diffuse axonal lesions led to the expression of both genes in identical subsets of retinal ganglion cells. When regeneration was prevented by removing a piece of the optic nerve, mRNA levels remained elevated. Disruption of axonal transport by colchicine and vinblastine led to the induction of both genes in normal retina. Blocking electrical activity with tetrodotoxin had no effect. This indicates that retrogradely transported signals induced by target contact regulate GAP-43 and alpha-tubulin transcription. Furthermore, the joint regulation of GAP-43 and alpha-tubulin mRNA levels after different kinds of lesion suggests that a common pathway underlies the regulation of neuronal GAP-43 and alpha-tubulin gene expression. In contrast, distinct mechanisms may control the extent and maintenance of increased mRNA levels of these genes.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

P Bormann, and V M Zumsteg, and L W Roth, and E Reinhard
July 1995, Journal of neurocytology,
P Bormann, and V M Zumsteg, and L W Roth, and E Reinhard
December 1994, Journal of neurobiology,
P Bormann, and V M Zumsteg, and L W Roth, and E Reinhard
October 1998, Neuroreport,
P Bormann, and V M Zumsteg, and L W Roth, and E Reinhard
May 2007, Experimental eye research,
P Bormann, and V M Zumsteg, and L W Roth, and E Reinhard
December 2005, The European journal of neuroscience,
P Bormann, and V M Zumsteg, and L W Roth, and E Reinhard
January 1996, Brain research,
P Bormann, and V M Zumsteg, and L W Roth, and E Reinhard
December 2020, Life sciences,
P Bormann, and V M Zumsteg, and L W Roth, and E Reinhard
April 1991, Neuron,
P Bormann, and V M Zumsteg, and L W Roth, and E Reinhard
August 2003, Journal of neuroscience research,
P Bormann, and V M Zumsteg, and L W Roth, and E Reinhard
February 2001, Neurobiology of disease,
Copied contents to your clipboard!