Disposition of the acyclic nucleoside phosphonate (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine. 1998

M K Bijsterbosch, and L J Smeijsters, and T J van Berkel
Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, The Netherlands. BIJSTERB@CHEM.LEIDENUNIV.NL

The acyclic nucleoside phosphonate (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA] has been shown to be active against pathogens, like hepatitis B viruses and Plasmodium parasites, that infect parenchymal liver cells. (S)-HPMPA is therefore an interesting candidate drug for the treatment of these infections. To establish effective therapeutic protocols for (S)-HPMPA, it is essential that the kinetics of its hepatic uptake be evaluated and that the role of the various liver cell types be examined. In the present study, we investigated the disposition of (S)-HPMPA and assessed its hepatic uptake. Rats were intravenously injected with [3H](S)-HPMPA, and after an initial rapid distribution phase (360 +/- 53 ml/kg of body weight), the radioactivity was cleared from the circulation with a half-life of 11.7 +/- 1.4 min. The tissue distribution of [3H](S)-HPMPA was determined at 90 min after injection (when >99% of the dose cleared). Most (57.0% +/- 1.1%) of the injected [3H](S)-HPMPA was excreted unchanged in the urine. The radioactivity that was retained in the body was almost completely recovered in the kidneys and the liver (68.4% +/- 2.5% and 16.1% +/- 0.4% of the radioactivity in the body, respectively). The uptake of [3H](S)-HPMPA by the liver occurred mainly by parenchymal cells (92.1% +/- 3.4% of total uptake by the liver). Kupffer cells and endothelial cells accounted for only 6.1% +/- 3.5% and 1.8% +/- 0.8% of the total uptake by the liver, respectively. Preinjection with probenecid reduced the hepatic and renal uptake of [3H](S)-HPMPA by approximately 75%, which points to a major role of a probenecid-sensitive transporter in the uptake of (S)-HPMPA by both tissues. In conclusion, we show that inside the liver, (S)-HPMPA is mainly taken up by parenchymal liver cells. However, the level of uptake by the kidneys is much higher, which leads to nephrotoxicity. An approach in which (S)-HPMPA is coupled to carriers that are specifically taken up by parenchymal cells may increase the effectiveness of the drug in the liver and reduce its renal toxicity.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

M K Bijsterbosch, and L J Smeijsters, and T J van Berkel
July 1996, Antimicrobial agents and chemotherapy,
M K Bijsterbosch, and L J Smeijsters, and T J van Berkel
January 1987, Nucleic acids symposium series,
M K Bijsterbosch, and L J Smeijsters, and T J van Berkel
February 1998, Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association,
M K Bijsterbosch, and L J Smeijsters, and T J van Berkel
November 1991, Antimicrobial agents and chemotherapy,
M K Bijsterbosch, and L J Smeijsters, and T J van Berkel
July 1988, Biochemical and biophysical research communications,
M K Bijsterbosch, and L J Smeijsters, and T J van Berkel
May 1998, International journal of cancer,
M K Bijsterbosch, and L J Smeijsters, and T J van Berkel
April 1996, Tropical medicine & international health : TM & IH,
M K Bijsterbosch, and L J Smeijsters, and T J van Berkel
April 1987, European journal of clinical microbiology,
Copied contents to your clipboard!