Elevated expression of the cdc25A protein phosphatase in colon cancer. 1998

D Dixon, and T Moyana, and M J King
Saskatoon Cancer Centre, Saskatchewan, Canada.

The nuclear protein phosphatase cdc25A has been postulated to be a protooncogene. The total nuclear phosphotyrosyl protein phosphatase (PTP) activity and the expression of cdc25A were compared in normal and cancerous colon epithelial tissue. Nuclei derived from normal mucosal epithelium and tumors were analyzed for phosphotyrosyl protein phosphatase activity using the malachite green assay and a synthetic phosphotyrosyl peptide based on the sequence of cdc2, a known cdc25A phosphotyrosyl protein substrate. Tumorigenesis resulted in elevated nuclear PTP activity (343.0 +/- 37.0% of normal epithelial PTP activity) in 52% (29 of 56) of colon tumors. In all cases elevated nuclear PTP activity correlated with an increase in the expression of cdc25A. The changes in PTP activity observed were not due to any increase in the rate of growth of the colonic mucosa as no corresponding changes occurred with PTP activity under conditions of rapid mucosal growth.

UI MeSH Term Description Entries
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017027 Protein Tyrosine Phosphatases An enzyme group that specifically dephosphorylates phosphotyrosyl residues in selected proteins. Together with PROTEIN-TYROSINE KINASE, it regulates tyrosine phosphorylation and dephosphorylation in cellular signal transduction and may play a role in cell growth control and carcinogenesis. Phosphotyrosine Phosphatase,Protein-Tyrosine-Phosphatase,Tyrosyl Phosphoprotein Phosphatase,PTPase,Phosphotyrosyl Protein Phosphatase,Protein-Tyrosine Phosphatase,Phosphatase, Phosphotyrosine,Phosphatase, Phosphotyrosyl Protein,Phosphatase, Protein-Tyrosine,Phosphatase, Tyrosyl Phosphoprotein,Phosphatases, Protein Tyrosine,Phosphoprotein Phosphatase, Tyrosyl,Protein Phosphatase, Phosphotyrosyl,Protein Tyrosine Phosphatase,Tyrosine Phosphatases, Protein
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D020687 cdc25 Phosphatases A subclass of dual specificity phosphatases that play a role in the progression of the CELL CYCLE. They dephosphorylate and activate CYCLIN-DEPENDENT KINASES. Cell Division Cycle 25B protein,Dual Specificity Phosphatase Cdc25A,Dual Specificity Phosphatase Cdc25B,Dual Specificity Phosphatase Cdc25C,M-Phase Inducer Phosphatase 1,M-Phase Inducer Phosphatase 2,M-Phase Inducer Phosphatase 3,cdc25 Phosphatase,cdc25A Phosphatase,cdc25B Phosphatase,cdc25C Phosphatase,M Phase Inducer Phosphatase 1,M Phase Inducer Phosphatase 2,M Phase Inducer Phosphatase 3,Phosphatase, cdc25,Phosphatase, cdc25A,Phosphatase, cdc25B,Phosphatase, cdc25C,Phosphatases, cdc25

Related Publications

D Dixon, and T Moyana, and M J King
December 2008, Anti-cancer agents in medicinal chemistry,
D Dixon, and T Moyana, and M J King
July 1994, Oncology reports,
D Dixon, and T Moyana, and M J King
September 2000, The Journal of clinical investigation,
D Dixon, and T Moyana, and M J King
January 2004, Breast cancer (Tokyo, Japan),
D Dixon, and T Moyana, and M J King
March 2007, Oncogene,
D Dixon, and T Moyana, and M J King
March 2002, The Journal of biological chemistry,
D Dixon, and T Moyana, and M J King
February 2000, Bioorganic & medicinal chemistry,
D Dixon, and T Moyana, and M J King
August 2005, Journal of cellular physiology,
Copied contents to your clipboard!