Spectrum of point mutations in the coding region of the hypoxanthine-guanine phosphoribosyltransferase (hprt) gene in human T-lymphocytes in vivo. 1998

A Podlutsky, and A M Osterholm, and S M Hou, and A Hofmaier, and B Lambert
The Karolinska Institute, Department of Biosciences, CNT/Novum, Huddinge, Sweden.

The hypoxanthine-guanine phosphoribosyl transferase (hprt) locus in 6-thioguanine (TG) resistant T-lymphocytes is a useful target for the study of somatic in vivo mutagenesis, since it provides information about a broad spectrum of mutation. Mutations in the hprt coding region were studied in 124 TG-resistant T-cell clones from 38 healthy, non-smoking male donors from a previously studied population of bus maintenance workers, fine-mechanics and laboratory personnel. Their mean age was 43 years (range 23-64) and their hprt mutant frequency was 9.3 +/- 5.2 x 10(-6) (mean +/- SD, range 1.4-22.6 x 10(-6)). Sequence analysis of hprt cDNA identified 115 unique mutations; 76% were simple base substitutions, 10% were +/-1 bp frameshifts, and 10% were small deletions within exons (3-52 bp). In addition, two tandem base substitutions and one complex mutation were observed. Simple base substitutions were observed at 55 (20%) of 281 sites known to be mutable in the hprt coding sequence. The distribution of these mutations was significantly different than would be expected based upon a Poisson distribution (P < 0.0001), suggesting the existence of 'hotspots'. All of the 87 simple base substitutions occurred at known mutable sites, but eight were substitutions of a kind that have not previously been reported at these sites. The most frequently mutated sites were cDNA positions 197 and 146, with six and five independent mutations respectively. Four mutations were observed at position 131, and three each at positions 143, 208, 508 and 617. Transitions (52%) were slightly more frequent than tranversions (48%), and mutations at GC base pairs (56%) more common than mutations at AT base pairs (44%). GC > AT was the most common type of base pair substitution (37%). The majority of the mutations at GC base pairs (78%) occurred at sites with G in the non-transcribed strand. All but one of eight mutations at CpG-sites were of the kind expected from deamination of methylated cytosine. Deletion of a single base pair (-1 frameshift) was three times more frequent than insertion of a single bp (+1 frameshift). Almost half (6/13) of the small (3-52 bp) deletions within the coding sequence clustered in the 5' end of exon 2. Short repeats and other sequence motifs that have been associated with replication error were found in the flanking regions of most of the frameshifts and small deletions. However, several differences in the local sequence context between +/-1 frameshift and deletion mutations were also noticed. The present results identify positions 197, 146 and possibly 131 as hotspots for base substitution mutations, and confirm previously reported hotspots at positions 197, 508 and 617. In addition, the earlier notion of a deletion hotspot in the 5'end of exon 2 was confirmed. The observations of these mutational cluster regions in different human populations suggest that they are due to endogeneous mechanisms of mutagenesis, or to ubiquitous environmental influences. The emerging background spectrum of somatic in vivo mutation in the human hprt gene provides a useful basis for comparisons with radiation or chemically induced mutational spectra, as well as with gene mutations in human tumors.

UI MeSH Term Description Entries
D007041 Hypoxanthine Phosphoribosyltransferase An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or MERCAPTOPURINE to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8. Guanine Phosphoribosyltransferase,HPRT,Hypoxanthine-Guanine Phosphoribosyltransferase,IMP Pyrophosphorylase,HGPRT,HPRTase,Hypoxanthine Guanine Phosphoribosyltransferase,Phosphoribosyltransferase, Guanine,Phosphoribosyltransferase, Hypoxanthine,Phosphoribosyltransferase, Hypoxanthine-Guanine,Pyrophosphorylase, IMP
D008297 Male Males
D011336 Probability The study of chance processes or the relative frequency characterizing a chance process. Probabilities
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D016273 Occupational Exposure The exposure to potentially harmful chemical, physical, or biological agents that occurs as a result of one's occupation. Exposure, Occupational,Exposures, Occupational,Occupational Exposures
D016368 Frameshift Mutation A type of mutation in which a number of NUCLEOTIDES deleted from or inserted into a protein coding sequence is not divisible by three, thereby causing an alteration in the READING FRAMES of the entire coding sequence downstream of the mutation. These mutations may be induced by certain types of MUTAGENS or may occur spontaneously. Mutation, Frameshift,Frame Shift Mutation,Out-of-Frame Deletion,Out-of-Frame Insertion,Out-of-Frame Mutation,Deletion, Out-of-Frame,Deletions, Out-of-Frame,Frame Shift Mutations,Frameshift Mutations,Insertion, Out-of-Frame,Insertions, Out-of-Frame,Mutation, Frame Shift,Mutation, Out-of-Frame,Mutations, Frame Shift,Mutations, Frameshift,Mutations, Out-of-Frame,Out of Frame Deletion,Out of Frame Insertion,Out of Frame Mutation,Out-of-Frame Deletions,Out-of-Frame Insertions,Out-of-Frame Mutations
D017354 Point Mutation A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair. Mutation, Point,Mutations, Point,Point Mutations
D018899 CpG Islands Areas of increased density of the dinucleotide sequence cytosine--phosphate diester--guanine. They form stretches of DNA several hundred to several thousand base pairs long. In humans there are about 45,000 CpG islands, mostly found at the 5' ends of genes. They are unmethylated except for those on the inactive X chromosome and some associated with imprinted genes. CpG Clusters,CpG-Rich Islands,Cluster, CpG,Clusters, CpG,CpG Cluster,CpG Island,CpG Rich Islands,CpG-Rich Island,Island, CpG,Island, CpG-Rich,Islands, CpG,Islands, CpG-Rich

Related Publications

A Podlutsky, and A M Osterholm, and S M Hou, and A Hofmaier, and B Lambert
January 1997, Environmental and molecular mutagenesis,
A Podlutsky, and A M Osterholm, and S M Hou, and A Hofmaier, and B Lambert
January 2000, Advances in experimental medicine and biology,
A Podlutsky, and A M Osterholm, and S M Hou, and A Hofmaier, and B Lambert
January 2003, Nihon rinsho. Japanese journal of clinical medicine,
A Podlutsky, and A M Osterholm, and S M Hou, and A Hofmaier, and B Lambert
December 2011, Nucleosides, nucleotides & nucleic acids,
A Podlutsky, and A M Osterholm, and S M Hou, and A Hofmaier, and B Lambert
January 1988, Environmental and molecular mutagenesis,
A Podlutsky, and A M Osterholm, and S M Hou, and A Hofmaier, and B Lambert
January 2000, Advances in experimental medicine and biology,
A Podlutsky, and A M Osterholm, and S M Hou, and A Hofmaier, and B Lambert
October 2004, Nucleosides, nucleotides & nucleic acids,
A Podlutsky, and A M Osterholm, and S M Hou, and A Hofmaier, and B Lambert
April 2008, Nihon rinsho. Japanese journal of clinical medicine,
A Podlutsky, and A M Osterholm, and S M Hou, and A Hofmaier, and B Lambert
June 2008, Nucleosides, nucleotides & nucleic acids,
A Podlutsky, and A M Osterholm, and S M Hou, and A Hofmaier, and B Lambert
May 1991, American journal of human genetics,
Copied contents to your clipboard!