Prostaglandins inhibit testosterone secretion by mouse testes in vitro. 1976

A Bartke, and D Kupfer, and S Dalterio

Production of testosterone (T) by decapsulated mouse tests in vitro was significantly inhibited by adding prostaglandin (PG) A1, PGA2 or PGE1 to the incubation medium. Prostaglandin A1 at a concentration of 10(-6)M inhibited T production in this system both in the presence of moderate amounts of hCG (12.5 or 25.0 mIU/ml), and in the absence of gonadotropins. However, in the presence of very high levels of hCG (125.0 mIU/ml), all PGs tested appeared to have had a slight potentiating effect on T production when added in concentrations ranging from 10(-7) to 10(-5)M, and the inhibition of T accumulation in the medium was consistently observed only when the concentration of PGs was increased to 10(-3)M. These results suggest that a direct effect of PGs on testicular steroidogenesis may account for, or contributes to, the decrease in peripheral T levels observed after administration of PGs in vivo.

UI MeSH Term Description Entries
D008297 Male Males
D011454 Prostaglandins A (13E,15S)-15-Hydroxy-9-oxoprosta-10,13-dien-1-oic acid (PGA(1)); (5Z,13E,15S)-15-hydroxy-9-oxoprosta-5,10,13-trien-1-oic acid (PGA(2)); (5Z,13E,15S,17Z)-15-hydroxy-9-oxoprosta-5,10,13,17-tetraen-1-oic acid (PGA(3)). A group of naturally occurring secondary prostaglandins derived from PGE; PGA(1) and PGA(2) as well as their 19-hydroxy derivatives are found in many organs and tissues. PGA
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006063 Chorionic Gonadotropin A gonadotropic glycoprotein hormone produced primarily by the PLACENTA. Similar to the pituitary LUTEINIZING HORMONE in structure and function, chorionic gonadotropin is involved in maintaining the CORPUS LUTEUM during pregnancy. CG consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is virtually identical to the alpha subunits of the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN). Chorionic Gonadotropin, Human,HCG (Human Chorionic Gonadotropin),Biogonadil,Choriogonadotropin,Choriogonin,Chorulon,Gonabion,Human Chorionic Gonadotropin,Pregnyl,Gonadotropin, Chorionic,Gonadotropin, Human Chorionic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013737 Testis The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS. Testicles,Testes,Testicle
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A Bartke, and D Kupfer, and S Dalterio
June 1977, Science (New York, N.Y.),
A Bartke, and D Kupfer, and S Dalterio
November 1976, The Journal of endocrinology,
A Bartke, and D Kupfer, and S Dalterio
April 1981, Fertility and sterility,
A Bartke, and D Kupfer, and S Dalterio
April 1981, General and comparative endocrinology,
A Bartke, and D Kupfer, and S Dalterio
September 1979, The American journal of physiology,
A Bartke, and D Kupfer, and S Dalterio
June 1983, The American journal of physiology,
A Bartke, and D Kupfer, and S Dalterio
September 1979, The American journal of physiology,
A Bartke, and D Kupfer, and S Dalterio
January 1994, The Chinese journal of physiology,
A Bartke, and D Kupfer, and S Dalterio
March 1967, Endocrinology,
Copied contents to your clipboard!