Involvement of medial septal glutamate and GABAA receptors in behaviour-induced acetylcholine release in the hippocampus: a dual probe microdialysis study. 1998

E Moor, and E Schirm, and J Jacsó, and B H Westerink
University Centre for Pharmacy, Department of Medicinal Chemistry, Groningen, Netherlands. e.moor@farm.rug.nl

In the present study, the role of medial septal receptors in behaviour-induced increase in acetylcholine (ACh) release in hippocampus was investigated using dual-probe microdialysis in combination with a simple behavioural procedure. gamma-Aminobutyric acid (GABA) and glutamate receptor agonists and antagonists were administered by retrograde dialysis into the medial septal area, while ACh was measured in the ventral hippocampus. Rats were behaviourally activated by immobilization or handling, but only handling was performed during drug-treatment. The GABAA receptor agonist muscimol did not affect ACh release, but blocked the handling-induced increase in ACh release completely. In addition, muscimol administration induced behavioural activity. Administration of the GABAA receptor antagonist bicuculline increased ACh release more than 2-fold. However, handling-induced increase in ACh release, expressed as percentage of drug-induced release, was similar to that of controls. Administration of the glutamate receptor agonists N-methyl-D-aspartate (NMDA) and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the septal area increased hippocampal ACh levels, but reduced the handling-induced increase in ACh release. The NMDA antagonist, 3-((R)-2-carboxypiperazin-4-yl) (CPP) increased ACh levels moderately, and reduced handling-induced increase in ACh release. However, similarly to muscimol, CPP administration induced behavioural activity. The AMPA/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) did not affect behaviour or basal ACh levels, but attenuated the handling-evoked ACh release. We conclude that the handling-induced increase in hippocampal ACh levels is mediated via stimulation of septal non-NMDA, and possibly NMDA receptors, whereas GABAA receptors are probably not involved. The feasibility of the experimental design is further discussed.

UI MeSH Term Description Entries
D008297 Male Males
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D012149 Restraint, Physical Use of a device for the purpose of controlling movement of all or part of the body. Splinting and casting are FRACTURE FIXATION. Immobilization, Physical,Physical Restraint,Physical Immobilization,Physical Restraints,Restraints, Physical
D006234 Handling, Psychological Physical manipulation of animals and humans to induce a behavioral or other psychological reaction. In experimental psychology, the animal is handled to induce a stress situation or to study the effects of "gentling" or "mothering". Handling (Psychology),Handling, Psychology,Psychological Handling,Psychology Handling
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D012688 Septum Pellucidum A triangular double membrane separating the anterior horns of the LATERAL VENTRICLES of the brain. It is situated in the median plane and bounded by the CORPUS CALLOSUM and the body and columns of the FORNIX (BRAIN). Septum Lucidum,Septum Pelusidum,Supracommissural Septum,Lucidum, Septum,Lucidums, Septum,Pellucidum, Septum,Pelusidum, Septum,Pelusidums, Septum,Septum Lucidums,Septum Pelusidums,Septum, Supracommissural,Septums, Supracommissural,Supracommissural Septums
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

E Moor, and E Schirm, and J Jacsó, and B H Westerink
July 1996, Journal of neurochemistry,
E Moor, and E Schirm, and J Jacsó, and B H Westerink
March 2008, Neuroscience letters,
E Moor, and E Schirm, and J Jacsó, and B H Westerink
February 1998, Neuroscience letters,
E Moor, and E Schirm, and J Jacsó, and B H Westerink
August 2000, Neurochemical research,
E Moor, and E Schirm, and J Jacsó, and B H Westerink
January 1994, Neuroscience letters,
Copied contents to your clipboard!