Somatic hypermutation in mouse lambda chains. 1998

T Azuma
Division of Biosignalling, Science University of Tokyo, Chiba, Japan. tazuma@rs.noda.sut.ac.jp

The frequency and distribution of somatic hypermutation in immunoglobulin genes and the effect of amino acid substitution on the structure/function of antibodies were studied using hybridomas that secrete anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) monoclonal antibodies bearing lambda 1 chains. A high frequency of mutation was observed in V-J exons and J-C introns of rearranged and active lambda 1 chains but not in the 5'-non-coding regions of these chains. Since a similar distribution was observed in inactive lambda 2 chain genes, 5'-non-coding regions containing a promoter were considered to be protected from mutation in view of their apparent importance. Using transgenic mice carrying chloramphenicol acetyl transferase transgenes driven by the VH promoter and heavy-chain intron enhancer, it was also revealed that these cis-acting elements are important in the induction of somatic hypermutation and are capable of inducing mutation even in non-immunoglobulin genes. Affinity of anti-NP Abs to NP increased with time after immunization to approximately 8,000-fold (affinity maturation); however, fine specificity, such as heteroclicity, remained unchanged. Memory B cells, which are responsible for affinity maturation, were analyzed in terms of the mutation from Trp to Leu at position 33, a change known to raise affinity about 10-fold and considered to be a memory B-cell marker. These cells were found predominantly in the early stage (2-3-week) hybridomas but rarely in late stage (> 12-week) ones, suggesting that a dynamic change in the memory B-cell population occurs during the immunization process.

UI MeSH Term Description Entries
D007146 Immunoglobulin lambda-Chains One of the types of light chain subunits of the immunoglobulins with a molecular weight of approximately 22 kDa. Ig lambda Chains,Immunoglobulins, lambda-Chain,Immunoglobulin lambda-Chain,lambda-1-Immunoglobulin,lambda-2-Immunoglobulin,lambda-Chain Immunoglobulins,lambda-Immunoglobulin Light Chain,lambda-Immunoglobulin Light Chains,lambda-x Immunoglobulin,Chains, Ig lambda,Chains, lambda-Immunoglobulin Light,Immunoglobulin lambda Chain,Immunoglobulin lambda Chains,Immunoglobulin, lambda-x,Immunoglobulins, lambda Chain,Light Chain, lambda-Immunoglobulin,Light Chains, lambda-Immunoglobulin,lambda 1 Immunoglobulin,lambda 2 Immunoglobulin,lambda Chain Immunoglobulins,lambda Chains, Ig,lambda Immunoglobulin Light Chain,lambda Immunoglobulin Light Chains,lambda x Immunoglobulin,lambda-Chain, Immunoglobulin,lambda-Chains, Immunoglobulin
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006825 Hybridomas Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell. Hybridoma
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000916 Antibody Diversity The phenomenon of immense variability characteristic of ANTIBODIES. It enables the IMMUNE SYSTEM to react specifically against the essentially unlimited kinds of ANTIGENS it encounters. Antibody diversity is accounted for by three main theories: (1) the Germ Line Theory, which holds that each antibody-producing cell has genes coding for all possible antibody specificities, but expresses only the one stimulated by antigen; (2) the Somatic Mutation Theory, which holds that antibody-producing cells contain only a few genes, which produce antibody diversity by mutation; and (3) the Gene Rearrangement Theory, which holds that antibody diversity is generated by the rearrangement of IMMUNOGLOBULIN VARIABLE REGION gene segments during the differentiation of the ANTIBODY-PRODUCING CELLS. Germ Line Theory,Antibody Diversities,Diversities, Antibody,Diversity, Antibody,Germ Line Theories,Theories, Germ Line,Theory, Germ Line
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

T Azuma
July 1998, Journal of immunology (Baltimore, Md. : 1950),
T Azuma
April 1995, Current opinion in immunology,
T Azuma
January 2007, Annual review of genetics,
T Azuma
April 2002, Current opinion in immunology,
T Azuma
November 1981, Journal of immunology (Baltimore, Md. : 1950),
T Azuma
December 1995, Current biology : CB,
T Azuma
May 1968, Journal of molecular biology,
Copied contents to your clipboard!