Neonatal lesions of the medial temporal lobe disrupt prefrontal cortical regulation of striatal dopamine. 1998

R C Saunders, and B S Kolachana, and J Bachevalier, and D R Weinberger
Clinical Brain Disorders Branch, NIMH Neuroscience Center at St Elizabeth's Hospital, Washington, DC 20032, USA. rcs@ln.nimh.nih.gov

The effects of early brain damage are often, but not always, milder than the effects of comparable damage in adults, depending on the age at which injury occurred, the region of the brain damaged, and the brain functions involved. Studies of the impact of early brain damage have generally focused on functions primarily associated with the neural structures injured, even though the development and function of distant but interconnected neural systems might also show effects. Here we examine the regulation of striatal dopamine by the dorsolateral prefrontal cortex, in adult monkeys that had had either neonatal or adult lesions of the medial-temporal lobe and in normal animals. We use microdialysis to measure the dopamine response in the caudate nucleus after the infusion of amphetamine into the dorsolateral prefrontal cortex. Normal animals and those with adult lesions showed a reduction in dopamine overflow; in contrast, monkeys with neonatal lesions showed increased dopamine release. Thus, early injury to the primate medial-temporal lobe disrupts the normal regulation of striatal dopamine activity by the dorsolateral prefrontal cortex during adulthood. Early focal lesions may have substantial and long-lasting impacts on the function of a distant neural system.

UI MeSH Term Description Entries
D008032 Limbic System A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)). Limbic Systems,System, Limbic,Systems, Limbic
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D003913 Dextroamphetamine The d-form of AMPHETAMINE. It is a central nervous system stimulant and a sympathomimetic. It has also been used in the treatment of narcolepsy and of attention deficit disorders and hyperactivity in children. Dextroamphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulating release of monamines, and inhibiting monoamine oxidase. It is also a drug of abuse and a psychotomimetic. d-Amphetamine,Curban,Dexamfetamine,Dexamphetamine,Dexedrine,Dextro-Amphetamine Sulfate,DextroStat,Dextroamphetamine Sulfate,Oxydess,d-Amphetamine Sulfate,dextro-Amphetamine,Dextro Amphetamine Sulfate,Sulfate, Dextroamphetamine,d Amphetamine,d Amphetamine Sulfate,dextro Amphetamine
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013702 Temporal Lobe Lower lateral part of the cerebral hemisphere responsible for auditory, olfactory, and semantic processing. It is located inferior to the lateral fissure and anterior to the OCCIPITAL LOBE. Anterior Temporal Lobe,Brodmann Area 20,Brodmann Area 21,Brodmann Area 22,Brodmann Area 37,Brodmann Area 38,Brodmann Area 52,Brodmann's Area 20,Brodmann's Area 21,Brodmann's Area 22,Brodmann's Area 37,Brodmann's Area 38,Brodmann's Area 52,Inferior Temporal Gyrus,Middle Temporal Gyrus,Parainsular Area,Fusiform Gyrus,Gyrus Fusiformis,Gyrus Temporalis Superior,Inferior Horn of Lateral Ventricle,Inferior Horn of the Lateral Ventricle,Lateral Occipito-Temporal Gyrus,Lateral Occipitotemporal Gyrus,Occipitotemporal Gyrus,Planum Polare,Superior Temporal Gyrus,Temporal Cortex,Temporal Gyrus,Temporal Horn,Temporal Horn of the Lateral Ventricle,Temporal Operculum,Temporal Region,Temporal Sulcus,Anterior Temporal Lobes,Area 20, Brodmann,Area 20, Brodmann's,Area 21, Brodmann,Area 21, Brodmann's,Area 22, Brodmann,Area 22, Brodmann's,Area 37, Brodmann,Area 37, Brodmann's,Area 38, Brodmann,Area 38, Brodmann's,Area 52, Brodmann,Area 52, Brodmann's,Area, Parainsular,Areas, Parainsular,Brodmanns Area 20,Brodmanns Area 21,Brodmanns Area 22,Brodmanns Area 37,Brodmanns Area 38,Brodmanns Area 52,Cortex, Temporal,Gyrus, Fusiform,Gyrus, Inferior Temporal,Gyrus, Lateral Occipito-Temporal,Gyrus, Lateral Occipitotemporal,Gyrus, Middle Temporal,Gyrus, Occipitotemporal,Gyrus, Superior Temporal,Gyrus, Temporal,Horn, Temporal,Lateral Occipito Temporal Gyrus,Lobe, Anterior Temporal,Lobe, Temporal,Occipito-Temporal Gyrus, Lateral,Occipitotemporal Gyrus, Lateral,Operculum, Temporal,Parainsular Areas,Region, Temporal,Sulcus, Temporal,Temporal Cortices,Temporal Gyrus, Inferior,Temporal Gyrus, Middle,Temporal Gyrus, Superior,Temporal Horns,Temporal Lobe, Anterior,Temporal Lobes,Temporal Lobes, Anterior,Temporal Regions
D015259 Dopamine Agents Any drugs that are used for their effects on dopamine receptors, on the life cycle of dopamine, or on the survival of dopaminergic neurons. Dopamine Drugs,Dopamine Effect,Dopamine Effects,Dopaminergic Agents,Dopaminergic Drugs,Dopaminergic Effect,Dopaminergic Effects,Agents, Dopamine,Agents, Dopaminergic,Drugs, Dopamine,Drugs, Dopaminergic,Effect, Dopamine,Effect, Dopaminergic,Effects, Dopamine,Effects, Dopaminergic

Related Publications

R C Saunders, and B S Kolachana, and J Bachevalier, and D R Weinberger
December 2022, Journal of cognitive neuroscience,
R C Saunders, and B S Kolachana, and J Bachevalier, and D R Weinberger
October 2018, Neurobiology of aging,
R C Saunders, and B S Kolachana, and J Bachevalier, and D R Weinberger
May 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R C Saunders, and B S Kolachana, and J Bachevalier, and D R Weinberger
January 2009, Developmental neuroscience,
R C Saunders, and B S Kolachana, and J Bachevalier, and D R Weinberger
November 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R C Saunders, and B S Kolachana, and J Bachevalier, and D R Weinberger
January 2015, Trends in neurosciences,
R C Saunders, and B S Kolachana, and J Bachevalier, and D R Weinberger
August 2003, Nature reviews. Neuroscience,
R C Saunders, and B S Kolachana, and J Bachevalier, and D R Weinberger
July 1994, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
R C Saunders, and B S Kolachana, and J Bachevalier, and D R Weinberger
December 2017, Proceedings of the National Academy of Sciences of the United States of America,
R C Saunders, and B S Kolachana, and J Bachevalier, and D R Weinberger
January 2003, Reviews in the neurosciences,
Copied contents to your clipboard!