Calcium signaling by cyclic ADP-ribose, NAADP, and inositol trisphosphate are involved in distinct functions in ascidian oocytes. 1998

M Albrieux, and H C Lee, and M Villaz
Laboratoire Canaux Ioniques et Signalisation, DSV/DBMS, 17 rue des Martyrs, F-38054 Grenoble, France.

ADP-ribosyl cyclase catalyzes the synthesis of two structurally and functionally different Ca2+ releasing molecules, cyclic ADP-ribose (cADPR) from beta-NAD and nicotinic acid-adenine dinucleotide phosphate (NAADP) from beta-NADP. Their Ca2+-mobilizing effects in ascidian oocytes were characterized in connection with that induced by inositol 1,4,5-trisphosphate (InsP3). Fertilization of the oocyte is accompanied by a decrease in the oocyte Ca2+ current and an increase in membrane capacitance due to the addition of membrane to the cell surface. Both of these electrical changes could be induced by perfusion, through a patch pipette, of nanomolar concentrations of cADPR or its precursor, beta-NAD, into unfertilized oocytes. The changes induced by beta-NAD showed a distinctive delay consistent with its enzymatic conversion to cADPR. The cADPR-induced changes were inhibited by preloading the oocytes with a Ca2+ chelator, indicating the effects were due to Ca2+ release induced by cADPR. Consistently, ryanodine (at high concentration) or 8-amino-cADPR, a specific antagonist of cADPR, but not heparin, inhibited the cADPR-induced changes. Both inhibitors likewise blocked the membrane insertion that normally occurred at fertilization consistent with it being mediated by a ryanodine receptor. The effects of NAADP were different from those of cADPR. Although NAADP induced a similar decrease in the Ca2+ current, no membrane insertion occurred. Moreover, pretreatment of the oocytes with NAADP inhibited the post-fertilization Ca2+ oscillation while cADPR did not. A similar Ca2+ oscillation could be artificially induced by perfusing into the oocytes a high concentration of InsP3 and NAADP could likewise inhibit such an InsP3-induced oscillation. This work shows that three independent Ca2+ signaling pathways are present in the oocytes and that each is involved in mediating distinct changes associated with fertilization. The results are consistent with a hierarchical organization of Ca2+ stores in the oocyte.

UI MeSH Term Description Entries
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009244 NAD+ Nucleosidase An enzyme that catalyzes the hydrolysis of nicotinamide adenine dinucleotide (NAD) to NICOTINAMIDE and ADENOSINE DIPHOSPHATE RIBOSE. Some are extracellular (ectoenzymes).The enzyme from some sources also catalyses the hydrolysis of nicotinamide adenine dinucleotide phosphate (NADP). DPNase,Diphosphopyridine Nucleotidase,NAD+ Glycohydrolase,NADase,Diphosphopyridine Nucleotidases,Ecto-NAD+ Glycohydrolase,NAD(P) Nucleosidase,NAD+ Nucleosidases,NAD-Glycohydrolase,NAD-Glycohydrolases,NADP Nucleosidase,NADP-Glycohydrolase,NADases,Ecto NAD+ Glycohydrolase,Glycohydrolase, Ecto-NAD+,Glycohydrolase, NAD+,NAD Glycohydrolase,NAD Glycohydrolases,NADP Glycohydrolase,Nucleosidase, NAD+,Nucleosidase, NADP,Nucleosidases, NAD+,Nucleotidase, Diphosphopyridine,Nucleotidases, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005306 Fertilization The fusion of a spermatozoon (SPERMATOZOA) with an OVUM thus resulting in the formation of a ZYGOTE. Conception,Fertilization, Delayed,Fertilization, Polyspermic,Conceptions,Delayed Fertilization,Delayed Fertilizations,Fertilizations,Fertilizations, Delayed,Fertilizations, Polyspermic,Polyspermic Fertilization,Polyspermic Fertilizations
D000246 Adenosine Diphosphate Ribose An ester formed between the aldehydic carbon of RIBOSE and the terminal phosphate of ADENOSINE DIPHOSPHATE. It is produced by the hydrolysis of nicotinamide-adenine dinucleotide (NAD) by a variety of enzymes, some of which transfer an ADP-ribosyl group to target proteins. ADP Ribose,Adenosine Diphosphoribose,ADP-Ribose,ADPribose,Adenosine 5'-Diphosphoribose,5'-Diphosphoribose, Adenosine,Adenosine 5' Diphosphoribose,Diphosphate Ribose, Adenosine,Diphosphoribose, Adenosine,Ribose, ADP,Ribose, Adenosine Diphosphate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Albrieux, and H C Lee, and M Villaz
October 1997, Physiological reviews,
M Albrieux, and H C Lee, and M Villaz
January 1998, Cell biochemistry and biophysics,
M Albrieux, and H C Lee, and M Villaz
January 2001, Annual review of pharmacology and toxicology,
M Albrieux, and H C Lee, and M Villaz
August 2011, Science China. Life sciences,
M Albrieux, and H C Lee, and M Villaz
December 2019, The Journal of biological chemistry,
M Albrieux, and H C Lee, and M Villaz
January 1996, Recent progress in hormone research,
M Albrieux, and H C Lee, and M Villaz
February 1995, The Journal of biological chemistry,
M Albrieux, and H C Lee, and M Villaz
January 1995, Journal of physiology, Paris,
M Albrieux, and H C Lee, and M Villaz
February 1990, Cell regulation,
Copied contents to your clipboard!