Metabolism of Zaleplon by human hepatic microsomal cytochrome P450 isoforms. 1998

A B Renwick, and H Mistry, and S E Ball, and D G Walters, and J Kao, and B G Lake
BIBRA International, Carshalton, UK.

1. The metabolism of Zaleplon (CL-284,846; ZAL) has been studied in human liver microsomal preparations and in cDNA-expressed human cytochrome P450 (CYP) isoforms. 2. Human liver microsomes catalysed the NADPH-dependent N-deethylation of ZAL to DZAL (CL-284,859), but not to two other known in vivo metabolites, namely M1 (CL-345,644) and M2 (CL-345,905). Sigmoidal kinetic plots were observed for ZAL deethylation indicating positive cooperativity. 3. The metabolism of ZAL to DZAL was determined in a characterized bank of 24 human liver microsomal preparations. Good correlations (r2 = 0.734-0.937) were observed with caffeine 8-hydroxylase, diazepam 3-hydroxylase, dextromethorphan N-demethylase and testosterone 2 beta-, 6 beta- and 15 beta-hydroxylase activities, which are all catalysed by CYP3A isoforms. In contrast, poor correlations (r2 = 0.152-0.428) were observed for enzymatic markers for CYP1A2, CYP2A6, CYP2C9/10, CYP2D6, CYP2E1 and CYP4A9/11. 4. The metabolism of ZAL to DZAL in human liver microsomes was inhibited to 6-15% of control by 5-50 microM of the mechanism-based CYP3A inhibitor troleandomycin. Whereas some inhibition of DZAL formation was observed in the presence of 200 microM diethyldithiocarbamate, 5-50 microM furafylline, 2-20 microM sulphaphenazole, 50-500 microM S-mephenytoin and 1-10 microM quinidine had little effect. 5. Using human B-lymphoblastoid cell microsomes containing cDNA-expressed CYP isoforms, ZAL was metabolized to DZAL by CYP3A4, hut not to any great extent by CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. 6. In contrast with ZAL, the NADPH-dependent N-deethylation of M2 to M1 proceeded at only a very low rate with both human liver microsomes and cDNA-expressed CYP3A4. 7. In summary, by correlation analysis, chemical inhibition studies and the use of cDNA-expressed CYPs, ZAL N-deethylation to DZAL in human liver appears to be catalysed by CYP3A isoforms.

UI MeSH Term Description Entries
D006993 Hypnotics and Sedatives Drugs used to induce drowsiness or sleep or to reduce psychological excitement or anxiety. Hypnotic,Sedative,Sedative and Hypnotic,Sedatives,Hypnotic Effect,Hypnotic Effects,Hypnotics,Sedative Effect,Sedative Effects,Sedatives and Hypnotics,Effect, Hypnotic,Effect, Sedative,Effects, Hypnotic,Effects, Sedative,Hypnotic and Sedative
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000081 Acetamides Derivatives of acetamide that are used as solvents, as mild irritants, and in organic synthesis.
D018076 DNA, Complementary Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe. Complementary DNA,cDNA,cDNA Probes,Probes, cDNA

Related Publications

A B Renwick, and H Mistry, and S E Ball, and D G Walters, and J Kao, and B G Lake
October 2000, Xenobiotica; the fate of foreign compounds in biological systems,
A B Renwick, and H Mistry, and S E Ball, and D G Walters, and J Kao, and B G Lake
September 2005, Biological & pharmaceutical bulletin,
A B Renwick, and H Mistry, and S E Ball, and D G Walters, and J Kao, and B G Lake
March 2000, Human & experimental toxicology,
A B Renwick, and H Mistry, and S E Ball, and D G Walters, and J Kao, and B G Lake
January 2009, Drug metabolism and disposition: the biological fate of chemicals,
A B Renwick, and H Mistry, and S E Ball, and D G Walters, and J Kao, and B G Lake
February 1997, Biochemical pharmacology,
A B Renwick, and H Mistry, and S E Ball, and D G Walters, and J Kao, and B G Lake
September 1998, Xenobiotica; the fate of foreign compounds in biological systems,
A B Renwick, and H Mistry, and S E Ball, and D G Walters, and J Kao, and B G Lake
January 1999, Molecular aspects of medicine,
A B Renwick, and H Mistry, and S E Ball, and D G Walters, and J Kao, and B G Lake
May 2002, Cellular and molecular life sciences : CMLS,
A B Renwick, and H Mistry, and S E Ball, and D G Walters, and J Kao, and B G Lake
January 2006, Drug metabolism and disposition: the biological fate of chemicals,
A B Renwick, and H Mistry, and S E Ball, and D G Walters, and J Kao, and B G Lake
July 2006, Drug metabolism and disposition: the biological fate of chemicals,
Copied contents to your clipboard!