Morphology of human retinal ganglion cells with intraretinal axon collaterals. 1998

B B Peterson, and D M Dacey
Department of Biological Structure, University of Washington, Seattle 98195-7420, USA.

Ganglion cells with intraretinal axon collaterals have been described in monkey (Usai et al., 1991), cat (Dacey, 1985), and turtle (Gardiner & Dacey, 1988) retina. Using intracellular injection of horseradish peroxidase and Neurobiotin in in vitro whole-mount preparations of human retina, we filled over 1000 ganglion cells, 19 of which had intraretinal axon collaterals and wide-field, spiny dendritic trees stratifying in the inner half of the inner plexiform layer. The axons were smooth and thin (approximately 2 microm) and gave off thin (<1 microm), bouton-studded terminal collaterals that extended vertically to terminate in the outer half of the inner plexiform layer. Terminal collaterals were typically 3-300 microm in length, though sometimes as long as 700 microm, and were present in clusters, or as single branched or unbranched varicose processes with round or somewhat flattened lobular terminal boutons 1-2 microm in diameter. Some cells had a single axon whereas other cells had a primary axon that gave rise to 2-4 axon branches. Axons were located either in the optic fiber layer or just beneath it in the ganglion cell layer, or near the border of the ganglion cell layer and the inner plexiform layer. This study shows that in the human retina, intraretinal axon collaterals are associated with a morphologically distinct ganglion cell type. The synaptic connections and functional role of these cells are not yet known. Since distinct ganglion cell types with intraretinal axon collaterals have also been found in monkey, cat, and turtle, this cell type may be common to all vertebrate retinas.

UI MeSH Term Description Entries
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001710 Biotin A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Vitamin H,Biodermatin,Biokur,Biotin Gelfert,Biotin Hermes,Biotin-Ratiopharm,Biotine Roche,Deacura,Gabunat,Medebiotin,Medobiotin,Rombellin,Biotin Ratiopharm,Gelfert, Biotin,Hermes, Biotin,Roche, Biotine
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

B B Peterson, and D M Dacey
August 2011, Investigative ophthalmology & visual science,
B B Peterson, and D M Dacey
November 1989, The Journal of comparative neurology,
B B Peterson, and D M Dacey
June 2017, The Journal of comparative neurology,
B B Peterson, and D M Dacey
June 2016, The Journal of neuroscience : the official journal of the Society for Neuroscience,
B B Peterson, and D M Dacey
September 1993, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
B B Peterson, and D M Dacey
February 1983, Proceedings of the Royal Society of London. Series B, Biological sciences,
B B Peterson, and D M Dacey
January 2023, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!