The adrenergic, cholinergic and NANC nerve-mediated contractions of the female rabbit bladder neck and proximal, medial and distal urethra. 1998

V Deplanne, and S Palea, and I Angel
Synthélabo Recherche, Department of Internal Medicine, Rueil-Malmaison, France.

1. The nerve-mediated contraction of the female rabbit bladder neck and different portions of the urethra (proximal, medial and distal) was studied in vitro by electrical stimulation (50 V, 30 Hz, 0.05 ms width, trains of 5 s every 5 min) by use of a superfusion system. 2. The amplitude (Emax) and the duration (Dmax) of the stimulated contraction were studied in the four tissues. The Emax value was significantly higher in distal urethra (2.07+/-0.15 g) compared to the bladder neck (1.08+/-0.10 g), proximal urethra (0.73+/-0.07 g) and medial urethra (0.87+/-0.07 g). In contrast, the Dmax value appeared slightly but significantly lower (P<0.05) in distal urethra (68.5+/-2.3 s) than in bladder neck (76.7+/-6.0 s), proximal urethra (84.5+/-5.0 s) and medial urethra (81.3+/-3.5 s). 3. Cocaine (1 microM) significantly increased the basal Emax values in medial and distal urethra and the basal Dmax values in the four tissues. 4. Prazosin (1 microM) significantly reduced E max value in proximal, medial and distal urethra and Dmax value in bladder neck and proximal urethra. Atropine (1 microM) also significantly reduced Emax values in bladder neck and proximal urethra and reduced Dmax value in bladder neck, but not in other tissues. Yohimbine (0.1 microM) was devoid of effect in the four tissues. 5. The association of prazosin (1 microM) and atropine (1 microM) did not modify the Emax and the Dmax values of the electrically-induced contractions, except in proximal urethra and in bladder neck where an additive inhibitory effect (on Emax only) was observed compared to prazosin and atropine alone. 6. The residual contractile response after combined treatment with prazosin and atropine was significantly diminished by tetrodotoxin (TTX; 1 microM) but not completely abolished. These NANC contractions were insensitive to P2X-purinoceptor desensitization by continuous tissue perfusion with alpha,beta-methylene ATP (30 microM). 7. These results demonstrate that bladder neck and proximal urethra are mainly innervated by the parasympathetic nervous system, whereas medial and distal urethras are to a greater extent under the control of the sympathetic innervation. The residual responses, insensitive to prazosin and atropine, may indicate a NANC innervation in the four tissues. However, the nature of the NANC neurotransmitter remains to be identified.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic

Related Publications

V Deplanne, and S Palea, and I Angel
December 1993, British journal of pharmacology,
V Deplanne, and S Palea, and I Angel
January 1991, Acta physiologica Scandinavica,
V Deplanne, and S Palea, and I Angel
January 1990, The Journal of urology,
V Deplanne, and S Palea, and I Angel
June 2013, Brain research bulletin,
V Deplanne, and S Palea, and I Angel
August 1977, The Journal of urology,
V Deplanne, and S Palea, and I Angel
January 1983, Canadian journal of physiology and pharmacology,
V Deplanne, and S Palea, and I Angel
January 1981, European urology,
V Deplanne, and S Palea, and I Angel
March 1993, Nihon Hinyokika Gakkai zasshi. The japanese journal of urology,
Copied contents to your clipboard!