Interaction of Mg2+ with the allosteric site of muscarinic M2 receptors. 1998

U Burgmer, and U Schulz, and C Tränkle, and K Mohr
Pharmacology and Toxicology, Institute of Pharmacy, University of Bonn, Germany.

Mg2+-ions have been suspected to attenuate the inhibitory effect of allosteric modulators on the dissociation of orthosteric ligands from muscarinic M2 receptors. It was aimed to gain more insight into the molecular events underlying the effect of Mg2+. The interaction of Mg2+ with the allosteric model compounds W84 (hexane-1,6-bis [dimethyl-3'-phthalimidopropylammonium bromide]) and Chin3/6 (hexane-1 ,6-bis[dimethyl-3'-¿4-oxo-2-phenyl-3,4-dihydro-2H-quinazolin-1-yl propylammonium bromide]) was studied in porcine heart muscarinic receptors, the primary binding site of which was occupied by the ligand [3H]N-methylscopolamine ([3H]NMS). The incubation buffer was composed of 4 mM Na2HPO4 and 1 mM KH2PO4 (pH 7.4, 23 degrees C). The retardation of [3H]NMS dissociation (control t1/2=5.6 min) induced by the allosteric test compounds was diminished by 3 mM Mg2+ to a greater extent than to be expected with regard to its contribution to the ionic strength of the buffer solution. Concentration-effect curves for the allosteric retardation of [3H]NMS dissociation by W84 (half maximal effective concentration EC0.5=24 nM in the absence of Mg2+) and by Chin3/6 (EC0.5=28 nM) were shifted by Mg2+ to the right in a parallel fashion. The curve-shift was compatible with a competitive interplay between Mg2+ and the modulators. The pKb-values as a measure of the antagonistic potency of Mg2+, however, differed depending on the modulator, i.e. pKb=3.4 with W84 and pKb=2.8 with Chin3/6. Mg2+ itself was capable of slowing the dissociation of [3H]NMS; the maximal retardation of [3H]NMS dissociation was about 3 fold, the concentration-effect relationship was compatible with a two-site model using the above-mentioned pKb-values as affinity constants. Since the equilibrium-binding of [3H]NMS remained unchanged up to a Mg2+-concentration of 3 mM, the cation appears to inhibit the association and dissociation of [3H]NMS to the same extent in this concentration range. Taken together, the findings indicate that Mg2+ may bind to the allosteric region of muscarinic M2 receptors and that more than one site is involved in this interaction. The sites of action may represent divalent cation binding sites.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010797 Phthalimides The imide of phthalic acids.
D011799 Quinazolines A group of aromatic heterocyclic compounds that contain a bicyclic structure with two fused six-membered aromatic rings, a benzene ring and a pyrimidine ring. Quinazoline
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D006584 Hexamethonium Compounds Compounds containing the hexamethylenebis(trimethylammonium) cation. Members of this group frequently act as antihypertensive agents and selective ganglionic blocking agents. Compounds, Hexamethonium
D000495 Allosteric Site A site on an enzyme which upon binding of a modulator, causes the enzyme to undergo a conformational change that may alter its catalytic or binding properties. Allosteric Sites,Site, Allosteric,Sites, Allosteric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D043585 Receptor, Muscarinic M2 A specific subtype of muscarinic receptor found in the lower BRAIN, the HEART and in SMOOTH MUSCLE-containing organs. Although present in smooth muscle the M2 muscarinic receptor appears not to be involved in contractile responses. Muscarinic Receptor M2,Muscarinic Receptors M2,Receptors, Muscarinic M2,M2 Receptor, Muscarinic,M2 Receptors, Muscarinic,M2, Muscarinic Receptor,M2, Muscarinic Receptors,Muscarinic M2 Receptor,Muscarinic M2 Receptors,Receptor M2, Muscarinic,Receptors M2, Muscarinic

Related Publications

U Burgmer, and U Schulz, and C Tränkle, and K Mohr
August 2007, European journal of pharmacology,
U Burgmer, and U Schulz, and C Tränkle, and K Mohr
December 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
U Burgmer, and U Schulz, and C Tränkle, and K Mohr
July 1998, Molecular pharmacology,
U Burgmer, and U Schulz, and C Tränkle, and K Mohr
March 2001, European journal of pharmacology,
U Burgmer, and U Schulz, and C Tränkle, and K Mohr
November 1996, European journal of pharmacology,
U Burgmer, and U Schulz, and C Tränkle, and K Mohr
July 1999, European journal of pharmacology,
U Burgmer, and U Schulz, and C Tränkle, and K Mohr
May 2001, Anesthesiology,
U Burgmer, and U Schulz, and C Tränkle, and K Mohr
December 1996, Biochemical pharmacology,
Copied contents to your clipboard!