Cloning and characterization of the CYP2D1-binding protein, retinol dehydrogenase. 1998

S Imaoka, and J Wan, and T Chow, and T Hiroi, and R Eyanagi, and H Shigematsu, and Y Funae
Laboratory of Chemistry, Osaka City University Medical School, Japan.

A CYP2D1-binding protein, 29 k-protein (p29), has been isolated and its N-terminal amino acid sequence has been reported (Ohishi et al. (1993) Biochim. Biophys. Acta 1158, 227-236). In this study, p29 cDNA was isolated by PCR with oligonucleotide probes designed from the N-terminal amino acid sequence and p29 was found to be a microsomal retinol dehydrogenase, a member of the short-chain alcohol dehydrogenase family which metabolize hydroxysteroids and prostaglandins. CYP2D1 and p29 were expressed in Saccharomyces cerevisiae to characterize these proteins. CYP2D1 had an absorption maximum at 448 nm in a CO-reduced form. Expressed p29 in yeast cells was detected with anti-p29 antibody. Solubilized CYP2D1 and p29 from yeast microsomes were mixed and applied to an anti-CYP2D1 antibody-binding column. Both proteins were retained in the column and eluted with glycine buffer (pH 2.8). However, when applied alone, p29 was not retained in the column. The findings indicated that CYP2D1 bound tightly with p29. Catalytic activities of p29 expressed in yeast were investigated. p29 had retinal reductase activity in the presence of NADPH. Addition of CYP2D1 and NADPH-P450 reductase increased the retinal reductase activity of p29. These findings suggest that the complex of CYP2D1, p29, and NADPH-P450 reductase has an important role in the metabolism of retinoids.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450

Related Publications

S Imaoka, and J Wan, and T Chow, and T Hiroi, and R Eyanagi, and H Shigematsu, and Y Funae
January 1990, Methods in enzymology,
S Imaoka, and J Wan, and T Chow, and T Hiroi, and R Eyanagi, and H Shigematsu, and Y Funae
October 1997, Journal of cellular physiology,
S Imaoka, and J Wan, and T Chow, and T Hiroi, and R Eyanagi, and H Shigematsu, and Y Funae
January 1988, Japanese journal of ophthalmology,
S Imaoka, and J Wan, and T Chow, and T Hiroi, and R Eyanagi, and H Shigematsu, and Y Funae
May 1999, Molecular genetics and metabolism,
S Imaoka, and J Wan, and T Chow, and T Hiroi, and R Eyanagi, and H Shigematsu, and Y Funae
January 1982, Methods in enzymology,
S Imaoka, and J Wan, and T Chow, and T Hiroi, and R Eyanagi, and H Shigematsu, and Y Funae
December 1997, The Journal of biological chemistry,
S Imaoka, and J Wan, and T Chow, and T Hiroi, and R Eyanagi, and H Shigematsu, and Y Funae
March 1985, Archives of biochemistry and biophysics,
S Imaoka, and J Wan, and T Chow, and T Hiroi, and R Eyanagi, and H Shigematsu, and Y Funae
December 1992, Biology of reproduction,
S Imaoka, and J Wan, and T Chow, and T Hiroi, and R Eyanagi, and H Shigematsu, and Y Funae
August 2002, Gene,
S Imaoka, and J Wan, and T Chow, and T Hiroi, and R Eyanagi, and H Shigematsu, and Y Funae
December 1990, Endocrinology,
Copied contents to your clipboard!