Modular distribution of vasoactive intestinal polypeptide in the rat barrel cortex: changes induced by neonatal removal of vibrissae. 1998

F Hajós, and K Zilles, and A Zsarnovszky, and P Sótonyi, and K Gallatz, and A Schleicher
Department of Anatomy and Histology, University of Veterinary Science, Budapest, Hungary.

The distribution of vasoactive intestinal polypeptide-immunoreactive neuronal structures in the barrel cortex (posteromedial barrel subfield) of adult rats was analysed after unilateral removal of the vibrissal follicles of row C in neonatal rats. The hypothesis was tested whether the distribution of vasoactive intestinal polypeptide-immunoreactive structures depends on the normal anatomical organization of the specific sensory input. After three months survival the distribution of the vasoactive intestinal polypeptide-immunoreactive structures was morphometrically evaluated. This approach revealed alterations in the contralateral posteromedial barrel subfield, where the disappearance of barrel row C and a substantial increase in size mainly of barrel row D, but also of other rows could be detected. Increase in row D included both barrels and the interspace (septal segments between barrels in one row). As vasoactive intestinal polypeptide immunoreactivity of the barrel field was found previously to be localized in synaptic boutons involved in symmetric synapses, our present findings suggest that (i) the interspace is enriched in inhibitory vasoactive intestinal polypeptide-immunoreactive synapses as opposed to the excitatory thalamocortical input reaching the barrel hollow, (ii) the spatial distribution of the vasoactive intestinal polypeptide system in the barrel cortex is closely associated with the neuronal organization of the sensory input and reacts with a considerable plasticity to lesion-induced changes of the input, and (iii) the compensatory barrel hypertrophy in a row neighbouring the deafferented row involves an increasing number of vasoactive intestinal polypeptide-immunoreactive synapses per barrel.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014660 Vasoactive Intestinal Peptide A highly basic, 28 amino acid neuropeptide released from intestinal mucosa. It has a wide range of biological actions affecting the cardiovascular, gastrointestinal, and respiratory systems and is neuroprotective. It binds special receptors (RECEPTORS, VASOACTIVE INTESTINAL PEPTIDE). VIP (Vasoactive Intestinal Peptide),Vasoactive Intestinal Polypeptide,Vasointestinal Peptide,Intestinal Peptide, Vasoactive,Intestinal Polypeptide, Vasoactive,Peptide, Vasoactive Intestinal,Peptide, Vasointestinal,Polypeptide, Vasoactive Intestinal
D014738 Vibrissae Stiff hairs projecting from the face around the nose of most mammals, acting as touch receptors. Whiskers,Whisker

Related Publications

F Hajós, and K Zilles, and A Zsarnovszky, and P Sótonyi, and K Gallatz, and A Schleicher
August 1984, Neuroscience,
F Hajós, and K Zilles, and A Zsarnovszky, and P Sótonyi, and K Gallatz, and A Schleicher
January 1988, Journal of neural transmission,
F Hajós, and K Zilles, and A Zsarnovszky, and P Sótonyi, and K Gallatz, and A Schleicher
January 1979, Neuroscience,
F Hajós, and K Zilles, and A Zsarnovszky, and P Sótonyi, and K Gallatz, and A Schleicher
May 2000, The Journal of comparative neurology,
F Hajós, and K Zilles, and A Zsarnovszky, and P Sótonyi, and K Gallatz, and A Schleicher
June 1998, The European journal of neuroscience,
F Hajós, and K Zilles, and A Zsarnovszky, and P Sótonyi, and K Gallatz, and A Schleicher
January 1998, Acta neurobiologiae experimentalis,
F Hajós, and K Zilles, and A Zsarnovszky, and P Sótonyi, and K Gallatz, and A Schleicher
January 1982, Brain research,
F Hajós, and K Zilles, and A Zsarnovszky, and P Sótonyi, and K Gallatz, and A Schleicher
January 1985, Peptides,
F Hajós, and K Zilles, and A Zsarnovszky, and P Sótonyi, and K Gallatz, and A Schleicher
January 1988, Neurobiology of aging,
F Hajós, and K Zilles, and A Zsarnovszky, and P Sótonyi, and K Gallatz, and A Schleicher
January 1997, Auris, nasus, larynx,
Copied contents to your clipboard!