Luteinizing hormone releasing hormone (LHRH) neurons maintained in nasal explants decrease LHRH messenger ribonucleic acid levels after activation of GABA(A) receptors. 1998

S M Fueshko, and S Key, and S Wray
Laboratory of Neurochemistry, National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892-4130, USA.

Inhibition of the LHRH system appears to play an important role in preventing precocious activation of the hypothalamic-pituitary-gonadal axis. Evidence points to gamma-aminobutyric acid (GABA) as the major negative regulator of postnatal LHRH neuronal activity. Changes in LHRH messenger RNA (mRNA) levels after alterations of GABAergic activity have been reported in vivo. However, the extent to which GABA acts directly on LHRH neurons to effect LHRH mRNA levels has been difficult to ascertain. The present work evaluates the effect of GABAergic activity, via GABA(A) receptors, on LHRH neuropeptide gene expression in LHRH neurons maintained in olfactory explants generated from E11.5 mouse embryos. These explants maintain large numbers of primary LHRH neurons that migrate from bilateral olfactory pits in a directed manner. Using in situ hybridization histochemistry and single cell analysis, we report dramatic alterations in LHRH mRNA levels. Inhibition of spontaneous synaptic activity by GABA(A) antagonists, bicuculline (10(-5) M) or picrotoxin (10(-4) M), or of electrical activity by tetrodotoxin (TTX, 10(-6) M) significantly increased LHRH mRNA levels. In contrast, LHRH mRNA levels decreased in explants cultured with the GABA(A) receptor agonist, muscimol (10(-4) M), or KCl (50 mM). The observed responses suggest that LHRH neurons possess functional pathways linking GABA(A) receptors to repression of neuropeptide gene expression and indicate that gene expression in embryonic LHRH neurons, outside the CNS, is highly responsive to alterations in neuronal activity.

UI MeSH Term Description Entries
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009831 Olfactory Mucosa That portion of the nasal mucosa containing the sensory nerve endings for SMELL, located at the dome of each NASAL CAVITY. The yellow-brownish olfactory epithelium consists of OLFACTORY RECEPTOR NEURONS; brush cells; STEM CELLS; and the associated olfactory glands. Olfactory Epithelium,Olfactory Membrane,Epithelium, Olfactory,Membrane, Olfactory,Membranes, Olfactory,Mucosa, Olfactory,Olfactory Membranes
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D003584 Cytological Techniques Methods used to study CELLS. Cytologic Technics,Cytological Technic,Cytological Technics,Cytological Technique,Technic, Cytological,Technics, Cytological,Technique, Cytological,Techniques, Cytological,Cytologic Technic,Technic, Cytologic,Technics, Cytologic
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu

Related Publications

S M Fueshko, and S Key, and S Wray
October 1998, Nihon Ika Daigaku zasshi,
S M Fueshko, and S Key, and S Wray
December 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S M Fueshko, and S Key, and S Wray
January 2001, Vitamins and hormones,
S M Fueshko, and S Key, and S Wray
April 1999, Nihon Ika Daigaku zasshi,
S M Fueshko, and S Key, and S Wray
January 1986, Neurobiology of aging,
Copied contents to your clipboard!