| D008040 |
Genetic Linkage |
The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. |
Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic |
|
| D008969 |
Molecular Sequence Data |
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. |
Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular |
|
| D012150 |
Polymorphism, Restriction Fragment Length |
Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. |
RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms |
|
| D005784 |
Gene Amplification |
A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. |
Amplification, Gene |
|
| D005799 |
Genes, Dominant |
Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state. |
Conditions, Dominant Genetic,Dominant Genetic Conditions,Genetic Conditions, Dominant,Condition, Dominant Genetic,Dominant Gene,Dominant Genes,Dominant Genetic Condition,Gene, Dominant,Genetic Condition, Dominant |
|
| D005819 |
Genetic Markers |
A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. |
Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome |
|
| D000483 |
Alleles |
Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. |
Allelomorphs,Allele,Allelomorph |
|
| D014197 |
Trees |
Woody, usually tall, perennial higher plants (Angiosperms, Gymnosperms, and some Pterophyta) having usually a main stem and numerous branches. |
Tree |
|
| D016324 |
Sequence Tagged Sites |
Short tracts of DNA sequence that are used as landmarks in GENOME mapping. In most instances, 200 to 500 base pairs of sequence define a Sequence Tagged Site (STS) that is operationally unique in the human genome (i.e., can be specifically detected by the polymerase chain reaction in the presence of all other genomic sequences). The overwhelming advantage of STSs over mapping landmarks defined in other ways is that the means of testing for the presence of a particular STS can be completely described as information in a database. |
Sequence-Tagged Sites,Sequence Tagged Site,Sequence-Tagged Site,Site, Sequence Tagged,Site, Sequence-Tagged,Sites, Sequence Tagged,Sites, Sequence-Tagged,Tagged Site, Sequence,Tagged Sites, Sequence |
|
| D017343 |
Genes, Plant |
The functional hereditary units of PLANTS. |
Plant Genes,Gene, Plant,Plant Gene |
|