Transcription of INO2 and INO4 is regulated by the state of protein N-myristoylation in Saccharomyces cerevisiae. 1998

S J Cok, and C G Martin, and J I Gordon
Department of Molecular Biology and Pharmacology, Box 8103, Washington University School of Medicine,660 South Euclid Avenue, St Louis, MO 63110, USA.

Inositol regulates transcription of Saccharomyces cerevisiae genes required for de novo synthesis of acylCoAs and phospholipids. Removal of inositol results in transcriptional activation by heterodimeric complexes of two bHLH proteins, Ino2p and Ino4p. In the presence of inositol, transcription is repressed by Opi1p. MyristoylCoA:protein N-myristoyltransferase (Nmt1p) is an essential enzyme whose activity is influenced by cellular myristoylCoA pool size and availability. nmt451Dp contains a Gly451-->Asp substitution that produces temperature-dependent reductions in affinity for myristoylCoA and associated reductions in acylation of cellular N-myristoylproteins. The conditional lethality produced by nmt1-451D is rescued at temperatures up to 33 degreesC by withdrawal of inositol. We tested the hypothesis that N-myristoylproteins function to regulate INO2, INO4 and/or OPI1 transcription, thereby affecting the expression of inositol-sensitive genes that influence myristoylCoA metabolism. The effect of nmt1-451D on INO2 , INO4 and OPI1 promoter activities was examined by introducing episomes, containing their 5' non-transcribed domains linked to reporters, into isogenic NMT1 and nmt1-451D cells. The activity of INO2 is significantly higher, INO4 significantly lower and OPI1 unaffected in nmt1-451D cells, both in the presence and absence of inositol. These changes are associated with a net increase in expression of some inositol target genes, including FAS1 . FAS1 encodes one of the subunits of the fatty acid synthase complex that catalyzes de novo acylCoA (including myristoylCoA) biosynthesis. Augmented expression of FAS1 overcomes the kinetic defects in nmt451Dp. FAS1 expression is Ino2p-dependent in NMT1 cells at 24-33 degreesC. In contrast, FAS1 expression becomes Ino2p-independent in nmt1-451D cells at temperatures where efficient acylation of cellular N-myristoylproteins is jeopardized. The ability to maintain expression of FAS1 in nmt1-451Dino2 Delta cells suggests the existence of another transcription factor, or factors, whose expression/activity is inversely related to overall levels of cellular protein N-myristoy-lation. This factor is not functionally identical to Ino2p since other inositol-responsive genes (e.g. CHO1 ) maintain INO2 -dependent expression in nmt1-451D cells.

UI MeSH Term Description Entries
D007294 Inositol An isomer of glucose that has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379) Inositol phospholipids are important in signal transduction. Myoinositol,Chiro-Inositol,Mesoinositol,Chiro Inositol
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D000217 Acyltransferases Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3. Acyltransferase
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

S J Cok, and C G Martin, and J I Gordon
November 1984, Molecular and cellular biology,
S J Cok, and C G Martin, and J I Gordon
April 2024, International journal of biological macromolecules,
S J Cok, and C G Martin, and J I Gordon
February 2005, Genetics,
S J Cok, and C G Martin, and J I Gordon
December 1999, Yeast (Chichester, England),
Copied contents to your clipboard!