The influence of 3TC resistance mutation M184I on the fidelity and error specificity of human immunodeficiency virus type 1 reverse transcriptase. 1998

L F Rezende, and W C Drosopoulos, and V R Prasad
Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.

A common target for therapies against human immuno-deficiency virus type 1 (HIV-1) is the viral reverse transcriptase (RT). Treatment with the widely used nucleoside analog (-)-2', 3'-deoxy-3'-thiacytidine (3TC) leads to the development of resistance-conferring mutations at residue M184 within the YMDD motif of RT. First, variants of HIV with the M184I substitution appear transiently, followed by viruses containing the M184V substitution, which persist and become the dominant variant for the duration of therapy. In the three-dimensional crystal structure of HIV-1 RT complexed with double-stranded DNA, the M184 residue lies in the vicinity of the primer terminus, near the incoming dNTP substrate. Recent studies have shown that 3TC resistance mutations, including M184I, increase the nucleotide insertion and mispair extension fidelity. Therefore, we have examined the effects of the M184I mutation on the overall polymerase fidelity of HIV-1 RT via an M13-based forward mutation assay. We found the overall error rate of the M184I variant of HIV-1 RT to be 1.7 x 10(-5) per nucleotide. This represents a 4-fold increase in fidelity over wild-type HIV-1Hxb2RT (7.0 x 10(-5) per nucleotide) and a 2.5-fold increase in fidelity over the M184V variant (4.3 x 10(-5) per nucleotide). Of the nucleoside analog resistance mutations studied using the forward assay, the M184I variant has shown the greatest increase in fidelity observed to date. Interestingly, the M184I variant RT displays significantly altered error specificity, both in terms of error rate at specific sites and in the overall ratio of substitution to frameshift mutations in the entire target.

UI MeSH Term Description Entries
D007763 Lac Operon The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human

Related Publications

L F Rezende, and W C Drosopoulos, and V R Prasad
July 2000, Journal of molecular biology,
L F Rezende, and W C Drosopoulos, and V R Prasad
October 1989, The Journal of biological chemistry,
L F Rezende, and W C Drosopoulos, and V R Prasad
July 1992, FEBS letters,
L F Rezende, and W C Drosopoulos, and V R Prasad
February 1996, Biological chemistry Hoppe-Seyler,
L F Rezende, and W C Drosopoulos, and V R Prasad
January 2001, Journal of biomedical science,
L F Rezende, and W C Drosopoulos, and V R Prasad
March 1995, The Journal of infectious diseases,
L F Rezende, and W C Drosopoulos, and V R Prasad
October 2008, AIDS research and human retroviruses,
Copied contents to your clipboard!