Vagal afferent transmission in the NTS mediating reflex responses of the rat esophagus. 1998

W Y Lu, and D Bieger
Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada.

In urethan-anesthetized rats, esophageal distension evoked volume-dependent reflex contractions with phase-locked multiunit discharges in the central subnucleus of the solitary tract complex (NTSC) and the nucleus ambiguus. During blockade of solitarial, but not peripheral, muscarinic cholinoceptors, the volume-response relationship of reflex contractions was shifted rightward with a depression in pressure wave amplitude. Concurrently, premotor NTSC responses were attenuated and nucleus ambiguus activity was abolished during esophagomotor inhibition. Both NTSC discharges and reflex responses were eliminated, or strongly inhibited, during blockade of excitatory amino acid receptors (EAARs) with 6-cyano-7-nitroquinoxaline-2,3-dione, gamma-glutamylglycine or 2-amino-7-phosphonoheptanoate. In brain stem slice preparations, whole cell recordings in the NTSC region revealed fast excitatory postsynaptic potentials (EPSPS) with spikes in response to electrical stimulation of the solitary tract. Although spiking was facilitated by muscarine, EPSPS were resistant to cholinoceptor antagonists but sensitive to EAAR blockers. We conclude that esophageal vagal afferents excite ipsilateral NTSC interneurons via activation of glutamate receptors of the DL-alpha-amino-3-hydroxy-5-methylisoxazole-propionic acid and N-methyl-D-aspartate subtypes. Cholinergic input to the NTSC probably derives from propriobulbar sources and serves to modulate the responsiveness of reflex interneurons.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D004947 Esophagus The muscular membranous segment between the PHARYNX and the STOMACH in the UPPER GASTROINTESTINAL TRACT.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014630 Vagus Nerve The 10th cranial nerve. The vagus is a mixed nerve which contains somatic afferents (from skin in back of the ear and the external auditory meatus), visceral afferents (from the pharynx, larynx, thorax, and abdomen), parasympathetic efferents (to the thorax and abdomen), and efferents to striated muscle (of the larynx and pharynx). Cranial Nerve X,Pneumogastric Nerve,Tenth Cranial Nerve,Nerve X,Nervus Vagus,Cranial Nerve, Tenth,Cranial Nerves, Tenth,Nerve X, Cranial,Nerve Xs,Nerve, Pneumogastric,Nerve, Tenth Cranial,Nerve, Vagus,Nerves, Pneumogastric,Nerves, Tenth Cranial,Nerves, Vagus,Pneumogastric Nerves,Tenth Cranial Nerves,Vagus Nerves,Vagus, Nervus
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017552 Solitary Nucleus GRAY MATTER located in the dorsomedial part of the MEDULLA OBLONGATA associated with the solitary tract. The solitary nucleus receives inputs from most organ systems including the terminations of the facial, glossopharyngeal, and vagus nerves. It is a major coordinator of AUTONOMIC NERVOUS SYSTEM regulation of cardiovascular, respiratory, gustatory, gastrointestinal, and chemoreceptive aspects of HOMEOSTASIS. The solitary nucleus is also notable for the large number of NEUROTRANSMITTERS which are found therein. Nucleus Solitarius,Nuclei Tractus Solitarii,Nucleus Tractus Solitarii,Nucleus of Solitary Tract,Nucleus of Tractus Solitarius,Nucleus of the Solitary Tract,Solitary Nuclear Complex,Solitary Tract Nucleus,Complex, Solitary Nuclear,Complices, Solitary Nuclear,Nuclear Complex, Solitary,Nuclear Complices, Solitary,Nuclei Tractus Solitarius,Nucleus Tractus Solitarius,Nucleus, Solitary,Nucleus, Solitary Tract,Solitarii, Nuclei Tractus,Solitarius Nucleus, Tractus,Solitarius, Nuclei Tractus,Solitary Nuclear Complices,Tractus Solitarii, Nuclei,Tractus Solitarius Nucleus,Tractus Solitarius, Nuclei
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

W Y Lu, and D Bieger
January 2024, American journal of physiology. Cell physiology,
W Y Lu, and D Bieger
August 1989, Journal of neurophysiology,
W Y Lu, and D Bieger
July 2006, Respiratory physiology & neurobiology,
W Y Lu, and D Bieger
January 2004, Pulmonary pharmacology & therapeutics,
W Y Lu, and D Bieger
December 1992, Journal of applied physiology (Bethesda, Md. : 1985),
W Y Lu, and D Bieger
January 2002, Pulmonary pharmacology & therapeutics,
W Y Lu, and D Bieger
October 2001, American journal of physiology. Gastrointestinal and liver physiology,
W Y Lu, and D Bieger
July 2000, American journal of physiology. Regulatory, integrative and comparative physiology,
W Y Lu, and D Bieger
September 1991, Brain research,
Copied contents to your clipboard!