Gi- and protein kinase C-mediated heterologous potentiation of phospholipase C signaling by G protein-coupled receptors. 1998

M Schmidt, and B Lohmann, and K Hammer, and S Haupenthal, and M V Nehls, and K H Jakobs
Institut für Pharmakologie, Universitätsklinikum Essen, D-45122 Essen, Germany. martina.schmidt@uni-essen.de

We recently reported that activation of the highly efficient phospholipase C (PLC) stimulatory m3 muscarinic acetylcholine receptor (mAChR) can induce a long-lasting Gi-mediated heterologous potentiation of PLC stimulation in human embryonic kidney (HEK) 293 cells, which was accompanied by an increased cellular level of the PLC substrate phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2]. Here, we examined whether such a potentiated PLC response is also induced by the rather poorly PLC stimulatory m2 mAChR and the endogenously expressed purinergic and lysophosphatidic acid receptors. Pretreatment of m2 mAChR-expressing HEK 293 cells for 2 min with carbachol, followed by agonist washout and measurement of PLC activity >/=40 min later, caused a long-lasting (up to approximately 90 min) heterologous potentiation of receptor- and G protein-mediated PLC stimulation. A similar heterologous potentiation of receptor-mediated PLC stimulation was induced by short term activation of lysophosphatidic acid and purinergic receptors. Either of the three receptor agonists increased the cellular level of PtdIns(4,5)P2 by approximately 50%. The mAChR-induced PLC potentiation was fully prevented by either pertussis toxin or the protein kinase C (PKC) inhibitors staurosporine and Gö 6976, which did not affect acute PLC stimulation. On the other hand, the rise in PtdIns(4,5)P2 was prevented only by combined treatment of HEK 293 cells with pertussis toxin and PKC inhibitors. In conclusion, we demonstrated that activation of poorly PLC stimulatory receptors can also induce a long-lasting Gi-mediated heterologous potentiation of PLC signaling in HEK 293 cells and that this novel PLC regulatory process is under the control of PKC.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory

Related Publications

M Schmidt, and B Lohmann, and K Hammer, and S Haupenthal, and M V Nehls, and K H Jakobs
January 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Schmidt, and B Lohmann, and K Hammer, and S Haupenthal, and M V Nehls, and K H Jakobs
August 2004, Cellular signalling,
M Schmidt, and B Lohmann, and K Hammer, and S Haupenthal, and M V Nehls, and K H Jakobs
January 1997, Advances in second messenger and phosphoprotein research,
M Schmidt, and B Lohmann, and K Hammer, and S Haupenthal, and M V Nehls, and K H Jakobs
May 1998, The EMBO journal,
M Schmidt, and B Lohmann, and K Hammer, and S Haupenthal, and M V Nehls, and K H Jakobs
October 1996, Molecular pharmacology,
M Schmidt, and B Lohmann, and K Hammer, and S Haupenthal, and M V Nehls, and K H Jakobs
October 2000, Trends in neurosciences,
M Schmidt, and B Lohmann, and K Hammer, and S Haupenthal, and M V Nehls, and K H Jakobs
November 1996, Trends in biotechnology,
M Schmidt, and B Lohmann, and K Hammer, and S Haupenthal, and M V Nehls, and K H Jakobs
July 2000, Science's STKE : signal transduction knowledge environment,
M Schmidt, and B Lohmann, and K Hammer, and S Haupenthal, and M V Nehls, and K H Jakobs
July 2004, Acta pharmacologica Sinica,
M Schmidt, and B Lohmann, and K Hammer, and S Haupenthal, and M V Nehls, and K H Jakobs
November 2009, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
Copied contents to your clipboard!