Alterations in calcium handling in cardiac hypertrophy and heart failure. 1998

C W Balke, and S R Shorofsky
Department of Physiology, University of Maryland School of Medicine, Baltimore 21201, USA. bbalke@heart.ab.umd.edu

There is conflicting data concerning the effects of cardiac hypertrophy and failure on L-type Ca2+ channel density, the amplitude of the intracellular Ca2+ transients, and the characteristics of Ca2+ sparks. These discrepancies are probably due to multiple factors. First, the effects of cardiac hypertrophy on channel expression and cell adaptation are model dependent. Even within the same species, the mechanisms by which cardiac hypertrophy and heart failure are generated (genetic alteration, pressure overload, volume overload, high rate pacing, etc.) influence the results obtained. Second, with many animal models and diseased human hearts, the disease process is not uniformly distributed throughout the myocardium. Third, the effects on L-type Ca2+ channel behavior and SR function clearly depend on the extent of disease expression. Myocardial contractility increases with cardiac hypertrophy whereas it decreases with heart failure. Thus, it is difficult to compare results from different models of hypertrophy and heart failure at different stages of disease. More consistent data is likely to be obtained from longitudinal studies using a single animal model of disease. The challenge before us is to develop animal models that mimic human disease, which can be studied longitudinally during the progression of the disease process. This approach coupled with continued improvement in Ca2+ imaging and a greater understanding of normal E-C coupling, will enable us to identify precisely the abnormalities in E-C coupling that occur with the development of cardiac hypertrophy and heart failure and define the appropriate treatment modalities.

UI MeSH Term Description Entries
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006332 Cardiomegaly Enlargement of the HEART, usually indicated by a cardiothoracic ratio above 0.50. Heart enlargement may involve the right, the left, or both HEART VENTRICLES or HEART ATRIA. Cardiomegaly is a nonspecific symptom seen in patients with chronic systolic heart failure (HEART FAILURE) or several forms of CARDIOMYOPATHIES. Cardiac Hypertrophy,Enlarged Heart,Heart Hypertrophy,Heart Enlargement,Cardiac Hypertrophies,Enlargement, Heart,Heart Hypertrophies,Heart, Enlarged,Hypertrophies, Cardiac,Hypertrophies, Heart,Hypertrophy, Cardiac,Hypertrophy, Heart
D006333 Heart Failure A heterogeneous condition in which the heart is unable to pump out sufficient blood to meet the metabolic need of the body. Heart failure can be caused by structural defects, functional abnormalities (VENTRICULAR DYSFUNCTION), or a sudden overload beyond its capacity. Chronic heart failure is more common than acute heart failure which results from sudden insult to cardiac function, such as MYOCARDIAL INFARCTION. Cardiac Failure,Heart Decompensation,Congestive Heart Failure,Heart Failure, Congestive,Heart Failure, Left-Sided,Heart Failure, Right-Sided,Left-Sided Heart Failure,Myocardial Failure,Right-Sided Heart Failure,Decompensation, Heart,Heart Failure, Left Sided,Heart Failure, Right Sided,Left Sided Heart Failure,Right Sided Heart Failure
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

C W Balke, and S R Shorofsky
September 2013, Heart failure reviews,
C W Balke, and S R Shorofsky
August 2007, Current treatment options in cardiovascular medicine,
C W Balke, and S R Shorofsky
May 2007, Journal of cardiac failure,
C W Balke, and S R Shorofsky
September 2016, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology,
C W Balke, and S R Shorofsky
August 2006, American journal of physiology. Heart and circulatory physiology,
C W Balke, and S R Shorofsky
February 2013, Journal of molecular and cellular cardiology,
C W Balke, and S R Shorofsky
December 2023, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
C W Balke, and S R Shorofsky
December 2019, JACC. Basic to translational science,
Copied contents to your clipboard!