Transferrin receptor-dependent and -independent iron transport in gallium-resistant human lymphoid leukemic cells. 1998

C R Chitambar, and J P Wereley
Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.

Recent studies showed that gallium and iron uptake are decreased in gallium-resistant (R) CCRF-CEM cells; however, the mechanisms involved were not fully elucidated. In the present study, we compared the cellular uptake of 59Fe-transferrin (Tf) and 59Fe-pyridoxal isonicotinoyl hydrazone (PIH) to determine whether the decrease in iron uptake by R cells is caused by changes in Tf receptor (TfR)-dependent or TfR-independent iron uptake. We found that both 59Fe-Tf and 59Fe-PIH uptake were decreased in R cells. The uptake of 59Fe-Tf but not 59Fe-PIH could be blocked by an anti-TfR monoclonal antibody. After 59Fe-Tf uptake, R cells released greater amounts of 59Fe than gallium-sensitive (S) cells. However, after 59Fe-PIH uptake 59Fe release from S and R cells was similar. 125I-Tf exocytosis was greater in R cells. At confluency, S and R cells expressed equivalent amounts of TfR; however, at 24 and 48 hours in culture, TfR expression was lower in R cells. Our study suggests that the decrease in Tf-Fe uptake by R cells is caused by a combination of enhanced iron efflux from cells and decreased TfR-mediated iron transport into cells. Furthermore, because TfR-dependent and -independent iron uptake is decreased in R cells, both uptake systems may be controlled at some level by similar regulatory signal(s).

UI MeSH Term Description Entries
D007945 Leukemia, Lymphoid Leukemia associated with HYPERPLASIA of the lymphoid tissues and increased numbers of circulating malignant LYMPHOCYTES and lymphoblasts. Leukemia, Lymphocytic,Lymphocytic Leukemia,Lymphoid Leukemia,Leukemias, Lymphocytic,Leukemias, Lymphoid,Lymphocytic Leukemias,Lymphoid Leukemias
D011990 Receptors, Transferrin Membrane glycoproteins found in high concentrations on iron-utilizing cells. They specifically bind iron-bearing transferrin, are endocytosed with its ligand and then returned to the cell surface where transferrin without its iron is released. Transferrin Receptors,Transferrin Receptor,Receptor, Transferrin
D005708 Gallium A rare, metallic element designated by the symbol, Ga, atomic number 31, and atomic weight 69.72.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D014168 Transferrin An iron-binding beta1-globulin that is synthesized in the LIVER and secreted into the blood. It plays a central role in the transport of IRON throughout the circulation. A variety of transferrin isoforms exist in humans, including some that are considered markers for specific disease states. Siderophilin,Isotransferrin,Monoferric Transferrins,Serotransferrin,Transferrin B,Transferrin C,beta 2-Transferrin,beta-1 Metal-Binding Globulin,tau-Transferrin,Globulin, beta-1 Metal-Binding,Metal-Binding Globulin, beta-1,Transferrins, Monoferric,beta 1 Metal Binding Globulin,beta 2 Transferrin,tau Transferrin
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D019008 Drug Resistance, Neoplasm Resistance or diminished response of a neoplasm to an antineoplastic agent in humans, animals, or cell or tissue cultures. Antibiotic Resistance, Neoplasm,Antineoplastic Drug Resistance,Drug Resistance, Antineoplastic,Antineoplastic Agent Resistance,Neoplasm Drug Resistance,Resistance, Antineoplastic Agent,Resistance, Antineoplastic Drug

Related Publications

C R Chitambar, and J P Wereley
April 2006, Clinica chimica acta; international journal of clinical chemistry,
C R Chitambar, and J P Wereley
August 1989, Blood,
C R Chitambar, and J P Wereley
January 1991, Pathobiology : journal of immunopathology, molecular and cellular biology,
C R Chitambar, and J P Wereley
October 1992, Experimental cell research,
C R Chitambar, and J P Wereley
January 1982, Placenta,
Copied contents to your clipboard!