Physiologically based pharmacokinetics model of primidone and its metabolites phenobarbital and phenylethylmalonamide in humans, rats, and mice. 1998

H A El-Masri, and C J Portier
Laboratory of Computational Biology and Risk Analysis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.

Physiologically based pharmacokinetic modeling of the parent chemical primidone and its two metabolites phenobarbital and phenylethylmalonamide (PEMA) was applied to investigate the differences of primidone metabolism among humans, rats, and mice. The model simulated previously published pharmacokinetic data of the parent chemical and its metabolites in plasma and brain tissues from separate studies of the three species. Metabolism of primidone and its metabolites varied widely among a sample of three human subjects from two separate studies. Estimated primidone metabolism, as expressed by the maximal velocity Vmax, ranged from 0 to 0.24 mg. min-1.kg-1 for the production of phenobarbital and from 0.003 to 0. 02 mg.min-1.kg-1 for the production of PEMA among three human subjects. Further model simulations indicated that rats were more efficient at producing and clearing phenobarbital and PEMA than mice. However, the overall metabolism profile of primidone and its metabolites in mice indicated that mice were at higher risk of toxicity owing to higher residence of phenobarbital in their tissues and owing to the carcinogenic potential of phenobarbital as illustrated in long-term bioassays. This result was in agreement with a recently finished National Toxicology Program (NTP) carcinogenicity study of primidone in rats and mice.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D010657 Phenylethylmalonamide A metabolite of primidone. Ethylphenylmalonamide,Phenylethylmalondiamide,2-Ethyl-2-Phenylmalonamide,2 Ethyl 2 Phenylmalonamide
D011324 Primidone A barbiturate derivative that acts as a GABA modulator and anti-epileptic agent. It is partly metabolized to PHENOBARBITAL in the body and owes some of its actions to this metabolite. Desoxyphenobarbital,Primaclone,Apo-Primidone,Liskantin,Misodine,Mizodin,Mylepsinum,Mysoline,Primidon Holsten,Resimatil,Sertan,Apo Primidone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

H A El-Masri, and C J Portier
October 1980, American journal of veterinary research,
H A El-Masri, and C J Portier
May 1983, Journal of the American Veterinary Medical Association,
H A El-Masri, and C J Portier
January 1978, Drug metabolism and disposition: the biological fate of chemicals,
H A El-Masri, and C J Portier
January 1984, The Journal of pharmacology and experimental therapeutics,
H A El-Masri, and C J Portier
November 1979, Archives internationales de pharmacodynamie et de therapie,
Copied contents to your clipboard!