Diurnally changing effects of locomotor activity on body temperature in laboratory mice. 1998

D Weinert, and J Waterhouse
Institute of Zoology, Martin-Luther-Universität, Halle, Germany. weinert@zoologie.uni-halle.de

In mice circadian body temperature curves are masked due to the effect of motor activity. However, body temperature will not immediately reflect activity, but rather the integrated activity over IT minutes (integration time) and after a certain delay (lag), and the sensitivity to such masking may change throughout the circadian cycle. The aims of the present investigation were to estimate IT and lag, to quantify the effect of motor activity on body temperature at different times of the day, and, using these results, to draw temperature curves that are closer to the endogenous one. Activity and body temperature of adult male laboratory mice were recorded telemetrically at 10-min intervals. Animals were housed in air-conditioned rooms (T = 22+/-2 degrees C; relative humidity: 55-65%) with a light-dark cycle of 12 h:12 h (light from 0700 to 1900 hours) and food and water available ad lib. The diurnal activity and body temperature rhythms were similar with a main maximum during the dark time and a secondary maximum immediately following lights-on. Nearly all changes of activity were reflected in body temperature. IT and lag were established on the basis of the best correlation between body temperature and activity (overlapping 4-h sections of 12 days) for all combinations of IT from 10 to 90 min and lag from 0 to 50 min (10-min steps each). The overall means of IT and lag were 40 and 0 min, respectively. During the dark time the values were somewhat larger, but not significantly so. The correlation between activity and body temperature was significantly better in the light time compared to the dark time. The sensitivity of the body temperature to changes in activity was investigated by linear regression analysis for every hour over 12 days (IT = 40 min, lag = 0 min). The gradients assessed by regression analysis showed a diurnal pattern with maximal values during the light time (p < 0.01). Thus, body temperature was raised by activity more during the light time (minimum of body temperature and activity) than during the dark time. The intercepts showed a nearly sinusoidal diurnal pattern with maximal values in the middle of the dark time. Accepting that the intercepts correspond to zero activity at a certain time of day, one might use them to get a curve that is closer to the endogenous body temperature rhythm. Mechanisms (circadian and thermoregulatory) that might cause the diurnally changing sensitivity of body temperature to activity are discussed.

UI MeSH Term Description Entries
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D001833 Body Temperature Regulation The processes of heating and cooling that an organism uses to control its temperature. Heat Loss,Thermoregulation,Regulation, Body Temperature,Temperature Regulation, Body,Body Temperature Regulations,Heat Losses,Loss, Heat,Losses, Heat,Regulations, Body Temperature,Temperature Regulations, Body,Thermoregulations
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

D Weinert, and J Waterhouse
May 2021, Journal of the American Association for Laboratory Animal Science : JAALAS,
D Weinert, and J Waterhouse
March 2009, Physiology & behavior,
D Weinert, and J Waterhouse
January 1990, Neurotoxicology and teratology,
D Weinert, and J Waterhouse
August 1984, Pharmacology, biochemistry, and behavior,
D Weinert, and J Waterhouse
May 2020, Drug development and industrial pharmacy,
Copied contents to your clipboard!