Osmotic stress in viable Escherichia coli as the basis for the antibiotic response by polymyxin B. 1998

J T Oh, and T K Van Dyk, and Y Cajal, and P S Dhurjati, and M Sasser, and M K Jain
Department of Chemistry, University of Delaware, Newark 19716, USA.

Cationic antimicrobial peptides, such as polymyxin B (PxB), below growth inhibitory concentration induce expression of osmY gene in viable E. coli without leakage of solutes and protons. osmY expression is also a locus of hyperosmotic stress response induced by common food preservatives, such as hypertonic NaCl or sucrose. High selectivity of PxB against Gram-negative organisms and the basis for the hyperosmotic stress response at sublethal PxB concentrations is attributed to PxB-induced mixing of anionic phospholipid between the outer layer of the cytoplasmic membrane with phospholipids in the inner layer of the outer membrane. This explanation is supported by PxB-mediated rapid and direct exchange of anionic phospholipid between vesicles. This mechanism is consistent with the observation that genetically stable resistance against PxB could not be induced by mutagenesis.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D011112 Polymyxin B A mixture of polymyxins B1 and B2, obtained from BACILLUS POLYMYXA strains. They are basic polypeptides of about eight amino acids and have cationic detergent action on cell membranes. Polymyxin B is used for treatment of infections with gram-negative bacteria, but may be neurotoxic and nephrotoxic. Aerosporin,Polymyxin B Sulfate
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

J T Oh, and T K Van Dyk, and Y Cajal, and P S Dhurjati, and M Sasser, and M K Jain
February 1987, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
J T Oh, and T K Van Dyk, and Y Cajal, and P S Dhurjati, and M Sasser, and M K Jain
November 2020, Future microbiology,
J T Oh, and T K Van Dyk, and Y Cajal, and P S Dhurjati, and M Sasser, and M K Jain
January 1990, Journal of basic microbiology,
J T Oh, and T K Van Dyk, and Y Cajal, and P S Dhurjati, and M Sasser, and M K Jain
February 2003, Genome research,
J T Oh, and T K Van Dyk, and Y Cajal, and P S Dhurjati, and M Sasser, and M K Jain
January 2000, Biochimica et biophysica acta,
J T Oh, and T K Van Dyk, and Y Cajal, and P S Dhurjati, and M Sasser, and M K Jain
May 1967, Zeitschrift fur Naturforschung. Teil B, Chemie, Biochemie, Biophysik, Biologie und verwandte Gebiete,
J T Oh, and T K Van Dyk, and Y Cajal, and P S Dhurjati, and M Sasser, and M K Jain
November 1986, The Journal of antimicrobial chemotherapy,
J T Oh, and T K Van Dyk, and Y Cajal, and P S Dhurjati, and M Sasser, and M K Jain
September 2001, Biochemistry. Biokhimiia,
J T Oh, and T K Van Dyk, and Y Cajal, and P S Dhurjati, and M Sasser, and M K Jain
April 1986, Journal of bacteriology,
J T Oh, and T K Van Dyk, and Y Cajal, and P S Dhurjati, and M Sasser, and M K Jain
December 2016, Data in brief,
Copied contents to your clipboard!