Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. 1998

I Provencio, and H M Cooper, and R G Foster
Department of Biology and National Science Foundation Center for Biological Timing, University of Virginia, Charlottesville 22903, USA.

The availability of naturally occurring and transgenic retinal mutants has made the mouse an attractive experimental model to address questions regarding photoentrainment of circadian rhythms. However, very little is known about the retinal cells and the retinal projections to the nuclei of the murine circadian timing system. Furthermore, the effect of inherited retinal degeneration on these projections is not understood. In this report, we have used pseudorabies virus as a neuroanatomical tract tracer in mice to address a series of questions: Which retinal cells mediate circadian responses to light? What is the nature of the retinohypothalamic projection? What is the impact of the inherited retinal disorder, retinal degenerate (rd/rd), on the structures of the photoentrainment pathway? Our results show that a class ofretinal ganglion cell, morphologically similar to the type III ganglion cells of the rat, appears to project to central circadian structures of the mouse. They are few in number and sparsely distributed throughout the retina. The low number and broad distribution of these specialized retinal ganglion cells may be an adaptive mechanism to integrate environmental irradiance without compromising the spatial resolution required for vision. In addition, viral infection of conelike and rodlike photoreceptors and amacrinelike cells suggest that these cells may mediate or contribute to circadian responses to light. Inherited retinal degeneration has no obvious effect on the anatomy of the retinal cells or their projections to the circadian axis. These anatomical findings are consistent with our previous findings showing that aged rd/rd mice are capable of regulating their circadian rhythms by light with unattenuated sensitivity.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D011558 Herpesvirus 1, Suid A species of VARICELLOVIRUS producing a respiratory infection (PSEUDORABIES) in swine, its natural host. It also produces an usually fatal ENCEPHALOMYELITIS in cattle, sheep, dogs, cats, foxes, and mink. Aujeszky's Disease Virus,Swine Herpesvirus 1,Aujeszky Disease Virus,Herpesvirus 1 (alpha), Suid,Herpesvirus Suis,Pseudorabies Virus,Suid Herpesvirus 1,Aujeszkys Disease Virus,Herpesvirus 1, Swine,Pseudorabies Viruses,Virus, Pseudorabies,Viruses, Pseudorabies
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D012162 Retinal Degeneration A retrogressive pathological change in the retina, focal or generalized, caused by genetic defects, inflammation, trauma, vascular disease, or aging. Degeneration affecting predominantly the macula lutea of the retina is MACULAR DEGENERATION. (Newell, Ophthalmology: Principles and Concepts, 7th ed, p304) Degeneration, Retinal,Degenerations, Retinal,Retinal Degenerations
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms

Related Publications

I Provencio, and H M Cooper, and R G Foster
May 1974, Archives of ophthalmology (Chicago, Ill. : 1960),
I Provencio, and H M Cooper, and R G Foster
July 2020, Biology,
I Provencio, and H M Cooper, and R G Foster
July 2005, Investigative ophthalmology & visual science,
I Provencio, and H M Cooper, and R G Foster
August 2018, iScience,
I Provencio, and H M Cooper, and R G Foster
March 2019, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics,
I Provencio, and H M Cooper, and R G Foster
September 1997, The British journal of ophthalmology,
I Provencio, and H M Cooper, and R G Foster
December 2016, Science translational medicine,
I Provencio, and H M Cooper, and R G Foster
July 2015, Investigative ophthalmology & visual science,
I Provencio, and H M Cooper, and R G Foster
October 2022, Journal of biological rhythms,
Copied contents to your clipboard!