Transcriptional induction of cyclooxygenase-2 gene by okadaic acid inhibition of phosphatase activity in human chondrocytes: co-stimulation of AP-1 and CRE nuclear binding proteins. 1998

C Miller, and M Zhang, and Y He, and J Zhao, and J P Pelletier, and J Martel-Pelletier, and J A Di Battista
Department of Medicine, University of Montreal, Quebec, Canada.

The involvement of serine/threonine protein phosphatases in signaling pathways that control the expression of the cyclooxygenase-2 (COX-2) gene in human chondrocytes was examined. Okadaic acid (OKA), an inhibitor of protein phosphatases 1 (PP-1) and 2A (PP-2A), induced a delayed, time-dependent increase in the rate of COX-2 gene transcription (runoff assay) resulting in increased steady-state mRNA levels and enzyme synthesis. The latter response was dose dependent over a narrow range of 1-30 nmol/L with declining expression and synthesis of COX-2 at higher concentrations due to cell toxicity. The delayed increase in COX-2 mRNA expression was accompanied by the induction of the proto-oncogenes c-jun, junB, junD, and c-fos (but not FosB or Fra-1). Increased phosphorylation of CREB-1/ATF-1 transcription factors was observed beginning at 4 h and reached a zenith at 8 h. Gel-shift analysis confirmed the up-regulation of AP-1 and CRE nuclear binding proteins, though there was little or no OKA-induced nuclear protein binding to SP-1, AP-2, NF-kappaB or NF-IL-6 regulatory elements. OKA-induced nuclear protein binding to 32P-CRE oligonucleotides was abrogated by a pharmacological inhibitor of protein kinase A (PKA), KT-5720; the latter compound also inhibited OKA-induced COX-2 enzyme synthesis. Calphostin C (CalC), an inhibitor of PKC isoenzymes, had little effect in this regard. Inhibition of 12P-CRE binding was also observed in the presence of an antibody to CREB-binding protein (265-kDa CBP), an integrator and coactivator of cAMP-responsive genes. The binding to 32P-CRE was unaffected in the presence of excess radioinert AP-1 and COX-2 NF-IL-6 oligonucleotides, although a COX-2 CRE-oligo competed very efficiently. 32P-AP-1 consensus sequence binding was unaffected by incubation of chondrocytes with KT-5720 or CalC, but was dramatically diminished by excess radioinert AP-1 and CRE-COX-2 oligos. Supershift analysis in the presence of antibodies to c-Jun, c-Fos, JunD, and JunB suggested that AP-1 complexes were composed of c-Fos, JunB, and possibly c-Jun. OKA has no effect on total cellular PKC activity but caused a delayed time-dependent increase in total PKA activity and synthesis. OKA suppressed the activity of the MAP kinases, ERK1/2 in a time-dependent fashion, suggesting that the Raf-1/MEKK1/MEK1/ERK1,2 cascade was compromised by OKA treatment. By contrast, OKA caused a dramatic increase in SAPK/JNK expression and activity, indicative of an activation of MEKK1/JNKK/SAPK/JNK pathway. OKA stimulated a dose-dependent activation of CAT activity using transfected promoter-CAT constructs harboring the regulatory elements AP-1 (c-jun promoter) and CRE (CRE-tkCAT). We conclude that in primary phenotypically stable human chondrocytes, COX-2 gene expression may be controlled by critical phosphatases that interact with phosphorylation dependent (e.g., MAP kinases:AP-1, PKA:CREB/ATF) signaling pathways. AP-1 and CREB/ATF families of transcription factors may be important substrates for PP-1/PP-2A in human chondrocytes.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

C Miller, and M Zhang, and Y He, and J Zhao, and J P Pelletier, and J Martel-Pelletier, and J A Di Battista
February 1999, Oncogene,
C Miller, and M Zhang, and Y He, and J Zhao, and J P Pelletier, and J Martel-Pelletier, and J A Di Battista
June 1994, Molecular carcinogenesis,
C Miller, and M Zhang, and Y He, and J Zhao, and J P Pelletier, and J Martel-Pelletier, and J A Di Battista
November 1996, Cellular immunology,
C Miller, and M Zhang, and Y He, and J Zhao, and J P Pelletier, and J Martel-Pelletier, and J A Di Battista
October 2003, Journal of cellular biochemistry,
C Miller, and M Zhang, and Y He, and J Zhao, and J P Pelletier, and J Martel-Pelletier, and J A Di Battista
July 2003, Biochimie,
C Miller, and M Zhang, and Y He, and J Zhao, and J P Pelletier, and J Martel-Pelletier, and J A Di Battista
July 1994, Journal of leukocyte biology,
C Miller, and M Zhang, and Y He, and J Zhao, and J P Pelletier, and J Martel-Pelletier, and J A Di Battista
July 2001, Biochemical and biophysical research communications,
C Miller, and M Zhang, and Y He, and J Zhao, and J P Pelletier, and J Martel-Pelletier, and J A Di Battista
March 2000, Molecular pharmacology,
C Miller, and M Zhang, and Y He, and J Zhao, and J P Pelletier, and J Martel-Pelletier, and J A Di Battista
August 1999, Journal of ethnopharmacology,
C Miller, and M Zhang, and Y He, and J Zhao, and J P Pelletier, and J Martel-Pelletier, and J A Di Battista
January 2002, Journal of cellular biochemistry,
Copied contents to your clipboard!