Fas-mediated apoptosis in mouse hepatocytes involves the processing and activation of caspases. 1998

R A Jones, and V L Johnson, and N R Buck, and M Dobrota, and R H Hinton, and S C Chow, and G E Kass
School of Biological Sciences, University of Surrey, Guildford, England, UK.

The mechanism of Fas antigen-induced hepatocyte apoptosis was investigated. Using a monoclonal antibody directed against the Fas antigen, apoptosis was induced in freshly isolated murine hepatocytes within 90 minutes of antibody addition as assessed by plasma membrane bleb formation, chromatin condensation, and DNA fragmentation. Pretreatment of the cells with the caspase inhibitors, N-acetyl-Asp-Glu-Val-Asp aldehyde (Ac-DEVD-CHO), benzyloxycarbonyl-Val-Ala-DL-Asp-fluoromethylketone (Z-VAD-FMK), or Z-Asp-2,6-dichlorobenzoyloxymethylketone inhibited anti-Fas-mediated apoptosis. Likewise, the serine protease inhibitors, N-tosyl-L-phenyl chloromethyl ketone (TPCK) and 3,4-dichloroisocoumarin (DCI), prevented apoptosis, whereas N-tosyl-L-lysine chloromethyl ketone (TLCK), Ac-Leu-Leu-L-norleucinal, Ac-Leu-Leu-L-methional, and trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane were without effect. Examination of CED-3/caspase-3-related caspases revealed that pro-caspases-3 (CPP32) and -7 (Mch-3alpha) were rapidly processed after Fas antigen stimulation. Caspase-7 was further cleaved to form the catalytically active subunits. In contrast, the p17 subunit of caspase-3 was not detected, indicating slow formation or rapid degradation. The activation of CED-3-related caspases was further confirmed by an increase in the rate of Z-DEVD-7-amino-4-trifluoromethylcoumarin (Z-DEVD-AFC) hydrolysis that was sensitive to Ac-DEVD-CHO and was inhibited by pretreatment of the cells with TPCK but not by DCI. In contrast, no increase in the rates of hydrolysis of Z-YVAD-AFC, a substrate for caspase-1, was detected. Investigation of the in situ proteolytic cleavage of the CED-3 related caspases substrate, poly(ADP-ribose) polymerase, revealed that this protein was not degraded in hepatocytes undergoing Fas-mediated apoptosis. Taken together, our results show that processing of caspases, in particular, caspases-7 and -3, occurs during Fas-induced apoptosis of mouse hepatocytes and suggest a role of these proteases as well as serine protease(s) in the apoptotic response.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

R A Jones, and V L Johnson, and N R Buck, and M Dobrota, and R H Hinton, and S C Chow, and G E Kass
December 1994, Experimental cell research,
R A Jones, and V L Johnson, and N R Buck, and M Dobrota, and R H Hinton, and S C Chow, and G E Kass
April 1999, Clinical and experimental immunology,
R A Jones, and V L Johnson, and N R Buck, and M Dobrota, and R H Hinton, and S C Chow, and G E Kass
January 2004, Cell transplantation,
R A Jones, and V L Johnson, and N R Buck, and M Dobrota, and R H Hinton, and S C Chow, and G E Kass
December 2001, American journal of physiology. Gastrointestinal and liver physiology,
R A Jones, and V L Johnson, and N R Buck, and M Dobrota, and R H Hinton, and S C Chow, and G E Kass
August 2000, American journal of physiology. Cell physiology,
R A Jones, and V L Johnson, and N R Buck, and M Dobrota, and R H Hinton, and S C Chow, and G E Kass
September 1999, Gastroenterology,
R A Jones, and V L Johnson, and N R Buck, and M Dobrota, and R H Hinton, and S C Chow, and G E Kass
May 2012, Cell stem cell,
R A Jones, and V L Johnson, and N R Buck, and M Dobrota, and R H Hinton, and S C Chow, and G E Kass
March 2005, Molecular pharmacology,
R A Jones, and V L Johnson, and N R Buck, and M Dobrota, and R H Hinton, and S C Chow, and G E Kass
April 2000, The Journal of biological chemistry,
R A Jones, and V L Johnson, and N R Buck, and M Dobrota, and R H Hinton, and S C Chow, and G E Kass
July 2002, Hepatology (Baltimore, Md.),
Copied contents to your clipboard!