Osteoclast differentiation requires ascorbic acid. 1998

A A Ragab, and S A Lavish, and M A Banks, and V M Goldberg, and E M Greenfield
Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, USA.

Osteoclast differentiation assays are usually conducted in alpha minimal essential medium (alpha-MEM). We reasoned that determining which components of this media are critical for osteoclast differentiation might provide insight into the mechanisms that regulate osteoclast differentiation. This study demonstrates that ascorbic acid is the crucial component of alpha-MEM that stimulates differentiation of murine osteoclasts in cocultures with murine mesenchymal support cells. Thus, supplementation with ascorbic acid allows osteoclast differentiation to occur in basal MEM media as well as in RPMI-1640 and basal media Eagle (BME) media. The conclusion that osteoclast differentiation is stimulated by ascorbic acid was obtained whether osteoclast differentiation was induced by 1,25-dihydroxyvitamin D3 or parathyroid hormone, whether ST2 or CIMC-2 cells were used as mesenchymal support cells, and whether osteoclast precursors were obtained from spleen or bone marrow. Time course studies revealed that although ascorbic acid only modestly increases the rate at which osteoclast precursors begin to express tartrate-resistant acid phosphatase, it strongly increases the rate at which precursors fuse into mature, multinucleated cells. Moreover, ascorbic acid strongly increases the life span of both osteoclasts and their precursors. The increases in precursor formation, fusion, and life span induced by ascorbic acid are together responsible for the stimulation of osteoclast differentiation by ascorbic acid. Given the known effects of ascorbic acid on differentiation of mesenchymal cells, it may stimulate osteoclast differentiation indirectly by regulating the differentiation state of the mesenchymal cells that support osteoclast differentiation.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D010281 Parathyroid Hormone A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates. Natpara,PTH (1-84),PTH(1-34),Parathormone,Parathyrin,Parathyroid Hormone (1-34),Parathyroid Hormone (1-84),Parathyroid Hormone Peptide (1-34),Hormone, Parathyroid
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A A Ragab, and S A Lavish, and M A Banks, and V M Goldberg, and E M Greenfield
November 2010, Blood,
A A Ragab, and S A Lavish, and M A Banks, and V M Goldberg, and E M Greenfield
May 2010, Bone,
A A Ragab, and S A Lavish, and M A Banks, and V M Goldberg, and E M Greenfield
August 2000, Endocrinology,
A A Ragab, and S A Lavish, and M A Banks, and V M Goldberg, and E M Greenfield
September 1992, Annals of the New York Academy of Sciences,
A A Ragab, and S A Lavish, and M A Banks, and V M Goldberg, and E M Greenfield
November 2011, Journal of bone and mineral metabolism,
A A Ragab, and S A Lavish, and M A Banks, and V M Goldberg, and E M Greenfield
January 1991, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists,
A A Ragab, and S A Lavish, and M A Banks, and V M Goldberg, and E M Greenfield
January 2012, Endocrinology,
A A Ragab, and S A Lavish, and M A Banks, and V M Goldberg, and E M Greenfield
September 1997, The American journal of physiology,
A A Ragab, and S A Lavish, and M A Banks, and V M Goldberg, and E M Greenfield
March 1992, Nutrition reviews,
A A Ragab, and S A Lavish, and M A Banks, and V M Goldberg, and E M Greenfield
January 2019, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!