Microencapsulation of bovine spermatozoa for use in artificial insemination: a review. 1993

R L Nebel, and R Vishwanath, and W H McMillan, and R G Saacke
Virginia Polytechnic Institute and State University, Blacksburg 24061-315, USA.

A technique for microencapsulation of bovine spermatozoa has been developed with minimal spermatozoal injury and thus of potential use in artificial insemination. The polymers poly-l-lysine, polyvinylamine and protamine sulfate have proven best for membranes. Encapsulation has been successful with capsules ranging in size from 0.75 to 1.5 mm, and with sperm concentrations from 45 to 180 x 10(6) cells mL-1. Successful extenders include CUE, CAPROGEN, and egg yolk-citrate-glycerol (maximum 10% v/v egg yolk for normal capsular shape). Capsule fragility (ability to rupture under ageing and physical stress) is negatively related to membrane thickness which ranges from 1.92 to 5.32 microns (depending on the concentration of polymer used) and positively related to concentration of sperm encapsulated. Heterospermic studies have shown that encapsulated sperm are capable of fertilization in vivo, but are at a disadvantage to unencapsulated sperm when cows are inseminated at conventional times. Uterine retention of inseminates is favoured by capsules having a 'sticky' membrane. Using current procedures, preliminary homospermic fertility studies indicate that sperm encapsulated with poly-l-lysine or protamine sulfate may achieve normal fertility.

UI MeSH Term Description Entries
D007315 Insemination, Artificial Artificial introduction of SEMEN or SPERMATOZOA into the VAGINA to facilitate FERTILIZATION. Artificial Insemination,Eutelegenesis,Artificial Inseminations,Eutelegeneses,Inseminations, Artificial
D008297 Male Males
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D011107 Polylysine A peptide which is a homopolymer of lysine. Epsilon-Polylysine,Poly-(Alpha-L-Lysine),Epsilon Polylysine
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013076 Sperm Count A count of SPERM in the ejaculum, expressed as number per milliliter. Sperm Number,Count, Sperm,Counts, Sperm,Number, Sperm,Numbers, Sperm,Sperm Counts,Sperm Numbers
D013081 Sperm Motility Movement characteristics of SPERMATOZOA in a fresh specimen. It is measured as the percentage of sperms that are moving, and as the percentage of sperms with productive flagellar motion such as rapid, linear, and forward progression. Motilities, Sperm,Motility, Sperm,Sperm Motilities
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms

Related Publications

R L Nebel, and R Vishwanath, and W H McMillan, and R G Saacke
April 2017, Reproductive medicine and biology,
R L Nebel, and R Vishwanath, and W H McMillan, and R G Saacke
June 1985, Journal of animal science,
R L Nebel, and R Vishwanath, and W H McMillan, and R G Saacke
March 1988, Fertility and sterility,
R L Nebel, and R Vishwanath, and W H McMillan, and R G Saacke
January 1986, Fertility and sterility,
R L Nebel, and R Vishwanath, and W H McMillan, and R G Saacke
April 1978, Fertility and sterility,
R L Nebel, and R Vishwanath, and W H McMillan, and R G Saacke
January 1976, Journal of reproduction and fertility,
R L Nebel, and R Vishwanath, and W H McMillan, and R G Saacke
January 1977, Andrologia,
R L Nebel, and R Vishwanath, and W H McMillan, and R G Saacke
August 2015, Theriogenology,
R L Nebel, and R Vishwanath, and W H McMillan, and R G Saacke
August 1977, The Veterinary record,
R L Nebel, and R Vishwanath, and W H McMillan, and R G Saacke
May 1981, Journal of animal science,
Copied contents to your clipboard!