| D010566 |
Virulence Factors, Bordetella |
A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. |
Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella |
|
| D011956 |
Receptors, Cell Surface |
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. |
Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D013329 |
Structure-Activity Relationship |
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. |
Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships |
|
| D015398 |
Signal Transduction |
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. |
Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal |
|
| D044385 |
GTP-Binding Protein alpha Subunits |
The GTPase-containing subunits of heterotrimeric GTP-binding proteins. When dissociated from the heterotrimeric complex these subunits interact with a variety of second messenger systems. Hydrolysis of GTP by the inherent GTPase activity of the subunit causes it to revert to its inactive (heterotrimeric) form. The GTP-Binding protein alpha subunits are grouped into families according to the type of action they have on second messenger systems. |
G-Protein alpha Subunit,GTP-Binding Protein alpha Subunit,G Protein alpha Subunit,GTP Binding Protein alpha Subunit,GTP Binding Protein alpha Subunits,alpha Subunit, G-Protein |
|
| D019204 |
GTP-Binding Proteins |
Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. |
G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory |
|
| D020962 |
Heterotrimeric GTP-Binding Proteins |
GTP-BINDING PROTEINS that contain three non-identical subunits. They are found associated with members of the seven transmembrane domain superfamily of G-PROTEIN-COUPLED RECEPTORS. Upon activation the GTP-BINDING PROTEIN ALPHA SUBUNIT of the complex dissociates leaving a dimer of a GTP-BINDING PROTEIN BETA SUBUNIT bound to a GTP-BINDING PROTEIN GAMMA SUBUNIT. |
Heterotrimeric G Protein,Heterotrimeric G-Protein,Heterotrimeric G-Proteins,Heterotrimeric GTP-Binding Protein,G Protein, Heterotrimeric,G-Protein, Heterotrimeric,G-Proteins, Heterotrimeric,GTP-Binding Protein, Heterotrimeric,GTP-Binding Proteins, Heterotrimeric,Heterotrimeric G Proteins,Heterotrimeric GTP Binding Protein,Heterotrimeric GTP Binding Proteins,Protein, Heterotrimeric G,Protein, Heterotrimeric GTP-Binding |
|
| D037342 |
Pertussis Toxin |
One of the virulence factors produced by BORDETELLA PERTUSSIS. It is a multimeric protein composed of five subunits S1 - S5. S1 contains mono ADPribose transferase activity. |
IAP Pertussis Toxin,Islet-Activating Protein,Pertussigen,Histamine-Sensitizing Factor,Islets-Activating Protein,Lymphocytosis-Promoting Factor,Histamine Sensitizing Factor,Islet Activating Protein,Islets Activating Protein,Lymphocytosis Promoting Factor,Pertussis Toxin, IAP,Toxin, IAP Pertussis,Toxin, Pertussis |
|