Protein rotational relaxation as studied by solvent 1H and 2H magnetic relaxation. 1976

K Hallenga, and S H Koenig

Earlier studies of the magnetic field dependence of the nuclear spin magnetic relaxation rate of solvent protons in solutions of diamagnetic proteins have indicated that this dependence (called relaxation dispersion) is related to the rotational Brownian motion of solute proteins. In essence, the dispersion is such that 1/T1 (the proton spin-lattice relaxation rate) decreases monotonically as the magnetic field is increased from a very low value (approximately 10 Oe); the dispersion has a point of inflection at a value of magnetic field which depends on protein size, shape, concentration, temperature, and solvent composition. The value of the proton Larmor precession frequency nu(c) at the inflection field appears to relate to tau (R), the rotational relaxation time of the protein molecules. We have measured proton relaxation dispersions for solutions of various proteins that span a three-decade range of molecular weights, and for one sample of transfer ribonucleic acid. We have also measured deuteron relaxation dispersions for solutions of three proteins: lysozyme, carbonmonoxyhemoglobin, and Helix pomatia hemocyanin with molecular weight 900 000. A quantitative relationship between both proton and deuteron dispersion data and protein rotational relaxation is confirmed, and the point is made that magnetic dispersion measurements are of very general applicability for measuring the rotational relaxation rate of macromolecules in solution. It has been previously shown that the influence of proton motion on the relaxation behavior of the solvent is not due to exchange of solvent molecules between the bulk solvent and a hydration region of the protein. In the present paper, we suggest that the interaction results from a long range hydrodynamic effect fundamental to the situation of large Brownian particles in an essentially continuum fluid. The general features of the proposed mechanism are indicated, but no theoretical computations are presented.

UI MeSH Term Description Entries
D008280 Magnetics The study of MAGNETIC PHENOMENA. Magnetic
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008722 Methods A series of steps taken in order to conduct research. Techniques,Methodological Studies,Methodological Study,Procedures,Studies, Methodological,Study, Methodological,Method,Procedure,Technique
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003903 Deuterium The stable isotope of hydrogen. It has one neutron and one proton in the nucleus. Deuterons,Hydrogen-2,Hydrogen 2
D012997 Solvents Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed) Solvent
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

K Hallenga, and S H Koenig
April 1996, Magnetic resonance in medicine,
K Hallenga, and S H Koenig
July 2001, International journal of biological macromolecules,
K Hallenga, and S H Koenig
January 1987, Molekuliarnaia biologiia,
K Hallenga, and S H Koenig
January 2008, The journal of physical chemistry. B,
K Hallenga, and S H Koenig
January 2021, The Journal of chemical physics,
K Hallenga, and S H Koenig
December 2005, The journal of physical chemistry. B,
K Hallenga, and S H Koenig
March 2011, The journal of physical chemistry. B,
Copied contents to your clipboard!