Binding of radioactively labeled carboxyatractyloside, atractyloside and bongkrekic acid to the ADP translocator of potato mitochondria. 1976

P V Vignais, and R Douce, and G J Lauquin, and P M Vignais

1. The inhibition of the ADP-stimulated respiration of potato mitochondria by carboxyatractyloside is relieved by high concentration of ADP or by the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). Atractyloside is a much less potent inhibitor than carboxyatractyloside. The inhibition of the ADP-stimulated respiration required about 60-times more atractyloside than carboxyatractyloside. 2. [35S]carboxyatractyloside and [3H]bongkrekic acid bind to potato mitochondria with high affinity (Kd = 10 to 20 nM, n=0.6-0.7 nmol per mg protein). Added ADP competes with carboxyatractyloside for binding; on the contrary ADP increases the amount of bound bongkrekic acid. [3H]atractyloside binds to potato mitochondria with a much lower affinity (Kd=0.45 muM) than carboxyatractyloside or bongkrekic acid. 3. Bound [3H]atractyloside is displaced by ADP, carboxyatractyloside and bongkrekic acid. The displacement of bound [35S]carboxyatractyloside by bongkrekic acid and of bound [3H]bongkrekic acid by carboxyatractyloside is markedly increased by ADP. 4. Bongkrekic acid competes with [35S]carboxyatractyloside for binding. Addition of a small concentration of ADP considerably enhances the inhibitory effect of bongkrekic acid on [35S]carboxyatractyloside binding. 5. The adenine nucleotide content of potato mitochondria is of the order of 1 nmol per mg protein. ADP transport in potato mitochondria is inhibited by atractyloside 30- to 40-times less efficiently than by carboxyatractyloside.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001865 Bongkrekic Acid An antibiotic produced by Pseudomonas cocovenenans. It is an inhibitor of MITOCHONDRIAL ADP, ATP TRANSLOCASES. Specifically, it blocks adenine nucleotide efflux from mitochondria by enhancing membrane binding. Flavotoxin A,Bongkrekate
D006027 Glycosides Any compound that contains a constituent sugar, in which the hydroxyl group attached to the first carbon is substituted by an alcoholic, phenolic, or other group. They are named specifically for the sugar contained, such as glucoside (glucose), pentoside (pentose), fructoside (fructose), etc. Upon hydrolysis, a sugar and nonsugar component (aglycone) are formed. (From Dorland, 28th ed; From Miall's Dictionary of Chemistry, 5th ed) Glycoside
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine

Related Publications

P V Vignais, and R Douce, and G J Lauquin, and P M Vignais
January 1975, Biochemical Society transactions,
P V Vignais, and R Douce, and G J Lauquin, and P M Vignais
September 1971, FEBS letters,
P V Vignais, and R Douce, and G J Lauquin, and P M Vignais
August 1975, FEBS letters,
P V Vignais, and R Douce, and G J Lauquin, and P M Vignais
April 2012, Bioorganic & medicinal chemistry letters,
P V Vignais, and R Douce, and G J Lauquin, and P M Vignais
July 1974, Biochemical and biophysical research communications,
P V Vignais, and R Douce, and G J Lauquin, and P M Vignais
April 1965, Biochimica et biophysica acta,
P V Vignais, and R Douce, and G J Lauquin, and P M Vignais
January 1979, Methods in enzymology,
Copied contents to your clipboard!