Characterization of the mouse neurofilament light (NF-L) gene promoter by in vitro transcription. 1998

M L Schwartz, and Y Hua, and R Cañete-Soler, and W W Schlaepfer
Division of Neuropathology, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA. mlschwar@mail.med.upenn.edu

We have used in vitro transcription to access the basic sequences and factors required for the transcription of the mouse neurofilament light promoter (pNF-L) in the absence of chromatin structure. Deletion from -1.7 to -154 results in little change in NF-L promoter activity using nuclear extracts from either brain (expressing) or liver (non-expressing) tissues. Further deletion to -29 results in a gradual five-fold drop in promoter activity in both extracts. Only replacement of the entire -148 to -29 region results in a drop in NF-L promoter activity to basal levels. Thus, the NF-L promoter differs from the mouse NF heavy (NF-H) and mid-sized (NF-M) promoters in that no specific sequence within the immediate upstream NF-L promoter region (-154 to -29) appears to be responsible for enhancement or brain-specific transcription. We show that the order of strength of the three NF promoters is NF-H>NF-M>NF-L and identify sequences that can increase or reduce transcription when placed in front of heterologous NF promoters. We conclude that the NF-L promoter is a modular, weak and promiscuous promoter whose regulation differs from NF-H or NF-M. Our data suggest that chromatin structure may play an important role in the regulation of the NF-L promoter.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004586 Electrophoresis An electrochemical process in which macromolecules or colloidal particles with a net electric charge migrate in a solution under the influence of an electric current. Electrophoreses
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses
D016900 Neurofilament Proteins Type III intermediate filament proteins that assemble into neurofilaments, the major cytoskeletal element in nerve axons and dendrites. They consist of three distinct polypeptides, the neurofilament triplet. Types I, II, and IV intermediate filament proteins form other cytoskeletal elements such as keratins and lamins. It appears that the metabolism of neurofilaments is disturbed in Alzheimer's disease, as indicated by the presence of neurofilament epitopes in the neurofibrillary tangles, as well as by the severe reduction of the expression of the gene for the light neurofilament subunit of the neurofilament triplet in brains of Alzheimer's patients. (Can J Neurol Sci 1990 Aug;17(3):302) Neurofilament Protein,Heavy Neurofilament Protein,Neurofilament Triplet Proteins,Neurofilament Protein, Heavy,Protein, Heavy Neurofilament,Protein, Neurofilament,Proteins, Neurofilament,Proteins, Neurofilament Triplet,Triplet Proteins, Neurofilament
D017353 Gene Deletion A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. Deletion, Gene,Deletions, Gene,Gene Deletions

Related Publications

M L Schwartz, and Y Hua, and R Cañete-Soler, and W W Schlaepfer
September 1995, Brain research. Molecular brain research,
M L Schwartz, and Y Hua, and R Cañete-Soler, and W W Schlaepfer
February 1995, Journal of neuroscience research,
M L Schwartz, and Y Hua, and R Cañete-Soler, and W W Schlaepfer
May 1994, The Journal of biological chemistry,
M L Schwartz, and Y Hua, and R Cañete-Soler, and W W Schlaepfer
July 2000, American journal of human genetics,
M L Schwartz, and Y Hua, and R Cañete-Soler, and W W Schlaepfer
February 1990, Nucleic acids research,
M L Schwartz, and Y Hua, and R Cañete-Soler, and W W Schlaepfer
February 1993, Nucleic acids research,
M L Schwartz, and Y Hua, and R Cañete-Soler, and W W Schlaepfer
July 2010, Gene,
M L Schwartz, and Y Hua, and R Cañete-Soler, and W W Schlaepfer
May 1998, The Journal of cell biology,
M L Schwartz, and Y Hua, and R Cañete-Soler, and W W Schlaepfer
September 1998, Shi yan sheng wu xue bao,
M L Schwartz, and Y Hua, and R Cañete-Soler, and W W Schlaepfer
March 2011, Experimental & molecular medicine,
Copied contents to your clipboard!