Genotoxicity of industrial wastes and effluents. 1998

L D Claxton, and V S Houk, and T J Hughes
National Health and Environmental Effects Research Laboratory (MD-68), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA. claxton.larry@epamail.epa.gov

In excess of several million pounds of genotoxic and/or carcinogenic industrial wastes are released into the U.S. environment each year. Chemical characterization of these waste materials can rarely provide an adequate assessment of their genotoxicity and potential hazard. Bioassays do not require prior information about chemical composition and can effectively assess the genotoxicity of complex waste materials. The most commonly used genotoxicity assay has been the Salmonella mutagenicity assay. Results with this system have shown that the genotoxic potency of industrial wastes can vary over 10 orders of magnitude, from virtually nondetectable to highly potent. Industries employing similar industrial processes generally release wastes of similar potency. Extremely high potency wastes include those from furazolidone and nitrofurfural production. Pulp and paper mills, steel foundries, and organic chemical manufacturing facilities also discharge wastes of noteworthy potency. Treatment and remediation of some wastes, such as pulp and paper mill effluents, have been shown to reduce or eliminate genotoxicity. However, in other cases, treatment and remediation have been shown to enhance genotoxicity, such as for fungal treatment of oils. Analyses of samples collected from areas known to receive industrial wastes and effluents have shown that genotoxins can accumulate in the receiving environment and have adverse effects on indigenous biota. The evaluation of hazardous wastes and effluents by genotoxicity assays may provide data useful not only for hazard identification but for comparative risk assessment.

UI MeSH Term Description Entries
D007220 Industrial Waste Worthless, damaged, defective, superfluous or effluent material from industrial operations. Waste, Industrial,Industrial Wastes,Wastes, Industrial
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001681 Biological Assay A method of measuring the effects of a biologically active substance using an intermediate in vivo or in vitro tissue or cell model under controlled conditions. It includes virulence studies in animal fetuses in utero, mouse convulsion bioassay of insulin, quantitation of tumor-initiator systems in mouse skin, calculation of potentiating effects of a hormonal factor in an isolated strip of contracting stomach muscle, etc. Bioassay,Assay, Biological,Assays, Biological,Biologic Assay,Biologic Assays,Assay, Biologic,Assays, Biologic,Bioassays,Biological Assays
D014874 Water Pollutants, Chemical Chemical compounds which pollute the water of rivers, streams, lakes, the sea, reservoirs, or other bodies of water. Chemical Water Pollutants,Landfill Leachate,Leachate, Landfill,Pollutants, Chemical Water
D018505 Waste Management Disposal, processing, controlling, recycling, and reusing the solid, liquid, and gaseous wastes of plants, animals, humans, and other organisms. It includes control within a closed ecological system to maintain a habitable environment. Management, Waste,Managements, Waste,Waste Managements
D018570 Risk Assessment The qualitative or quantitative estimation of the likelihood of adverse effects that may result from exposure to specified health hazards or from the absence of beneficial influences. (Last, Dictionary of Epidemiology, 1988) Assessment, Risk,Benefit-Risk Assessment,Risk Analysis,Risk-Benefit Assessment,Health Risk Assessment,Risks and Benefits,Analysis, Risk,Assessment, Benefit-Risk,Assessment, Health Risk,Assessment, Risk-Benefit,Benefit Risk Assessment,Benefit-Risk Assessments,Benefits and Risks,Health Risk Assessments,Risk Analyses,Risk Assessment, Health,Risk Assessments,Risk Benefit Assessment,Risk-Benefit Assessments

Related Publications

L D Claxton, and V S Houk, and T J Hughes
August 1992, Mutation research,
L D Claxton, and V S Houk, and T J Hughes
January 2011, Water science and technology : a journal of the International Association on Water Pollution Research,
L D Claxton, and V S Houk, and T J Hughes
July 2008, Journal of hazardous materials,
L D Claxton, and V S Houk, and T J Hughes
June 1970, Journal - Water Pollution Control Federation,
L D Claxton, and V S Houk, and T J Hughes
June 2012, Environmental toxicology and chemistry,
L D Claxton, and V S Houk, and T J Hughes
January 1987, Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes,
L D Claxton, and V S Houk, and T J Hughes
June 1970, Journal - Water Pollution Control Federation,
L D Claxton, and V S Houk, and T J Hughes
June 1976, Journal - Water Pollution Control Federation,
L D Claxton, and V S Houk, and T J Hughes
June 1972, Journal - Water Pollution Control Federation,
Copied contents to your clipboard!