Diversity of single potassium channels in isolated snail neurons. 1998

A V Sotkis, and P G Kostyuk, and E A Lukyanetz
Department of General Physiology of Nervous System, Bogomoletz Institute of Physiology, Kiev, Ukraine.

Comparison of K+ channels in mollusk and mammalian neurons has been made to elucidate their fundamental properties. Using patch clamp cell-attached configuration, K+ channels in isolated snail neurons were separated into three subtypes: with big (BKC), medium (MKC) and small (SKC) unitary conductances. BKC and MKC were activated at -30 mV and SKC at more negative potentials. BKC and MKC proved sensitive to TEA, whereas SKC were sensitive to 4-AP. Cd2+ in the pipet decreased unitary conductance of BKC by 55% and of MKC by about 31%. Bath application of 5-HT selectively suppressed MKC. It is suggested that BKC can be referred to large conductance Ca(2+)-dependent K+ currents (KCa), MKC to intermediate conductance KCa and SKC channels comply with the characteristics of A current of mammals. These data show that KCa and A currents may be the most general types of currents generated by K+ channels.

UI MeSH Term Description Entries
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D006372 Helix, Snails A genus of chiefly Eurasian and African land snails including the principal edible snails as well as several pests of cultivated plants. Helix (Snails),Snails Helix
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings
D019789 Tetraethylammonium A potassium-selective ion channel blocker. (From J Gen Phys 1994;104(1):173-90) Tetraethylammonium Chloride,Tetraethylammonium Ion,Tetraethylammonium Bromide,Tetraethylammonium Hydroxide,Tetraethylammonium Iodide,Bromide, Tetraethylammonium,Chloride, Tetraethylammonium,Hydroxide, Tetraethylammonium,Iodide, Tetraethylammonium,Ion, Tetraethylammonium
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A V Sotkis, and P G Kostyuk, and E A Lukyanetz
April 1989, Pflugers Archiv : European journal of physiology,
A V Sotkis, and P G Kostyuk, and E A Lukyanetz
May 1984, The Journal of general physiology,
A V Sotkis, and P G Kostyuk, and E A Lukyanetz
April 2005, The European journal of neuroscience,
A V Sotkis, and P G Kostyuk, and E A Lukyanetz
October 2015, European journal of pharmacology,
A V Sotkis, and P G Kostyuk, and E A Lukyanetz
May 2006, Cellular and molecular neurobiology,
A V Sotkis, and P G Kostyuk, and E A Lukyanetz
August 1986, Journal of neurophysiology,
A V Sotkis, and P G Kostyuk, and E A Lukyanetz
January 2019, Progress in brain research,
A V Sotkis, and P G Kostyuk, and E A Lukyanetz
December 2005, Journal of neurophysiology,
A V Sotkis, and P G Kostyuk, and E A Lukyanetz
October 2005, Neuroscience and behavioral physiology,
A V Sotkis, and P G Kostyuk, and E A Lukyanetz
September 2004, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
Copied contents to your clipboard!