Species differences in regional patterns of 3H-8-OH-DPAT and 3H-zolpidem binding in the rat and human brain. 1998

G E Duncan, and D J Knapp, and G R Breese, and F T Crews, and K Y Little
UNC Neuroscience Center, Department of Psychiatry, University of North Carolina at Chapel Hill, 27599, USA.

The rat has proven to be a valuable preclinical model for characterizing effects of psychotrophic drugs and for identifying new psychotherapeutic agents in pharmacological screens. However, substantial differences have been described between the rat and human brain in regard to the neuroanatomical distribution of some drug and neurotransmitter receptor binding sites. To assess the utility of the rat as a model for the neuroanatomical topography of 5-HT1A and type 1 benzodiazepine (BDZ) receptors in humans, the distribution of binding sites for 3H-8-OH-DPAT (5-HT1A agonist) and 3H-zolpidem (type 1 BDZ agonist) was compared with autoradiography in select regions of the rat and human brain. Concordance in the binding patterns for the two ligands was observed in several brain regions for the two species. However, substantial differences were also found in the topography of binding sites for the ligands in the rat and human brain. High 3H-8-OH-DPAT binding was seen in the dorsal raphe nucleus and hippocampal formation in both the rat and human brain. However, species differences were observed in the relative distribution of ligand binding among hippocampal subregions. In the cerebral cortex, the laminar distribution of 3H-8-OH-DPAT binding sites was notably different for rats and humans. In humans, outer cortical layers were most densely labeled with 3H-8-OH-DPAT, whereas in the rat cortex, the highest binding was in the inner layers. A striking difference between rats and humans was observed for 3H-8-OH-DPAT binding in the lateral septal nucleus, which was densely labeled in the rat but weakly labeled in humans. Substantial differences between rats and humans were also observed for 3H-zolpidem binding. In the rat brain, high densities of binding sites were found in the medial septum, inferior colliculus, and substantia nigra reticulata. These regions showed very low 3H-zolpidem binding in the human brain. Intermediate binding was seen in the rat cerebral cortex, and low binding was found in the hippocampus. By contrast, in humans, cerebral cortical regions were the most densely labeled of all regions studied, and certain hippocampal subregions exhibited relatively high binding. The striking neuroanatomical differences in 3H-8-OH-DPAT and 3H-zolpidem binding observed between rats and humans suggest that different functional consequences may be produced within specific brain regions after administration of drugs that influence 5-HT1A and type 1 BZD receptors.

UI MeSH Term Description Entries
D006993 Hypnotics and Sedatives Drugs used to induce drowsiness or sleep or to reduce psychological excitement or anxiety. Hypnotic,Sedative,Sedative and Hypnotic,Sedatives,Hypnotic Effect,Hypnotic Effects,Hypnotics,Sedative Effect,Sedative Effects,Sedatives and Hypnotics,Effect, Hypnotic,Effect, Sedative,Effects, Hypnotic,Effects, Sedative,Hypnotic and Sedative
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077334 Zolpidem An imidazopyridine derivative and short-acting GABA-A receptor agonist that is used for the treatment of INSOMNIA. Imidazo(1,2-a)pyridine-3-acetamide, N,N,6-trimethyl-2-(4-methylphenyl)-,Ambien,Amsic,Bikalm,Dalparan,N,N,6-Trimethyl-2-(4-methylphenyl)imidazo(1,2a)pyridine-3-acetamide hemitartrate,SL 80.0750,SL-800750-23-N,Stilnoct,Stilnox,Zodormdura,Zoldem,Zolirin,Zolpi-Lich,Zolpidem 1A Pharma,Zolpidem AbZ,Zolpidem Hemitartrate,Zolpidem Tartrate,Zolpimist,Zolpinox,SL 800750 23 N,Zolpi Lich
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography

Related Publications

G E Duncan, and D J Knapp, and G R Breese, and F T Crews, and K Y Little
July 2005, Pharmacology, biochemistry, and behavior,
G E Duncan, and D J Knapp, and G R Breese, and F T Crews, and K Y Little
July 1993, Brain research,
G E Duncan, and D J Knapp, and G R Breese, and F T Crews, and K Y Little
February 1996, Neurochemical research,
G E Duncan, and D J Knapp, and G R Breese, and F T Crews, and K Y Little
August 1995, Alcoholism, clinical and experimental research,
G E Duncan, and D J Knapp, and G R Breese, and F T Crews, and K Y Little
May 1986, European journal of pharmacology,
G E Duncan, and D J Knapp, and G R Breese, and F T Crews, and K Y Little
March 2010, Archives of biochemistry and biophysics,
G E Duncan, and D J Knapp, and G R Breese, and F T Crews, and K Y Little
June 1993, British journal of pharmacology,
G E Duncan, and D J Knapp, and G R Breese, and F T Crews, and K Y Little
June 2003, Brain research,
G E Duncan, and D J Knapp, and G R Breese, and F T Crews, and K Y Little
November 1994, Neuroscience letters,
G E Duncan, and D J Knapp, and G R Breese, and F T Crews, and K Y Little
January 2001, Neurochemistry international,
Copied contents to your clipboard!