The ionization of phenolic amines, including apomorphine, dopamine and catecholamines and an assessment of zwitterion constants. 1976

J Armstrong, and R B Barlow

The dissociation constants of many phenolic amines, including benzylamines, phenethylamines, phenylethanolamines, phenylpropylamines, catecholamines, and apomorphine have been measured by potentiometric titration at 25 degrees C. Measurements have also been made with many of their methoxy derivatives and with series of phenolic quaternary ammonium salts. Some compounds were also studied at 37 degrees C. 2 Usually at least five titrations were made with each compound and Debye--Hückel theory was applied to convert concentrations to activities but the estimates of pKa were not constant and found to increase with increasing concentration. The range studied was usually 5-15 mM and a least-squares line-fit, based on the empirical assumption that pKa varies with (concentration)1/2, has been used to calculate values for 10 mM solutions and to extrapolate to infinite dilution and to 100 mM. The dependence of pKa on concentration was much less at 37 degrees C than at 25 degrees C. 3 At 37 degrees C the pKa values of many biologically interesting compounds in the group, dopamine, noradrenaline, adrenaline and isoprenaline, coryneine (the trimethylammonium derivative of dopamine) and apomorphine are within 1 log unit of physiological pH, indicating the presence of a significant proportion of either the zwitterion or of the uncharged phenolic amine. 4 Zwitterion constants have been estimated from the pKa values of the phenolic amines and those of their methoxy and quaternary trimethylammonium analogues. Zwitterion formation does not appear to be associated with activity at alpha-adrenoceptors and probably not with activity at beta-receptors. The active species seems likely to contain the unionised phenolic group but at dopamine receptors this may be in the uncharged phenolic amine rather than in the phenolic ammonium salt.

UI MeSH Term Description Entries
D007477 Ions An atom or group of atoms that have a positive or negative electric charge due to a gain (negative charge) or loss (positive charge) of one or more electrons. Atoms with a positive charge are known as CATIONS; those with a negative charge are ANIONS.
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010627 Phenethylamines A group of compounds that are derivatives of beta- aminoethylbenzene which is structurally and pharmacologically related to amphetamine. (From Merck Index, 11th ed) Phenylethylamines
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D011199 Potentiometry Solution titration in which the end point is read from the electrode-potential variations with the concentrations of potential determining ions. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004983 Ethanolamines AMINO ALCOHOLS containing the ETHANOLAMINE; (-NH2CH2CHOH) group and its derivatives. Aminoethanols
D000588 Amines A group of compounds derived from ammonia by substituting organic radicals for the hydrogens. (From Grant & Hackh's Chemical Dictionary, 5th ed) Amine

Related Publications

J Armstrong, and R B Barlow
June 1983, Pharmaceutisch weekblad. Scientific edition,
J Armstrong, and R B Barlow
August 1971, The Journal of physical chemistry,
J Armstrong, and R B Barlow
May 1965, Journal of medicinal chemistry,
J Armstrong, and R B Barlow
February 1955, Archives of biochemistry and biophysics,
J Armstrong, and R B Barlow
January 1965, Bulletin of the Chemical Society of Japan,
Copied contents to your clipboard!