Reduction of capillary permeability in the fructose-induced hypertensive rat. 1998

M Chakir, and G E Plante, and P Maheux
Department of Medicine, Université de Sherbrooke, Québec, Canada.

Impaired insulin transcapillary transport and the subsequent decrease in insulin delivery to target organs have been suggested to play a role in insulin resistance. These defects were studied in fructose-fed rats, an animal model with insulin resistance. For this study, male Sprague-Dawley rats were fed with either a 60% fructose enriched (F) or a standard chow diet (N) for a total of 2, 4, or 8 weeks. Capillary permeability to albumin was assessed at the end of each dietary period by quantifying the extravasation of albumin-bound Evans blue (EB) dye in different organs. Unanesthetized animals were injected with Evans blue dye (20 mg/kg) in the caudal vein 10 min before being killed and EB dye was extracted by formamide from selected organs collected after exsanguination. As expected, rats had an increase in blood pressure upon feeding with fructose at 4 and 8 weeks (F, 149 +/- 3 mm Hg; N, 139 +/- 3 mm Hg; P < .05). Using this technique, we showed a 56% and a 51% reduction in capillary permeability in skeletal muscles at 4 and 8 weeks of fructose feeding, respectively (4 weeks: N, 44.5 +/- 5.0 microg/g of dry tissue; F, 19.8 +/- 4.2 microg/g of dry tissue; P < .01 and 8 weeks: N, 23.3 +/- 3.7 microg/g of dry tissue; F, 11.3 +/- 4.0 microg/g of dry tissue; P < .05). Similar changes were observed at 4 weeks in the thoracic aorta (N, 82.8 +/- 8.8 microg/g of dry tissue; F, 53.0 +/- 5.1 microg/g of dry tissue; P < .02) and skin (N, 36.0 +/- 5.3 microg of dry tissue; F, 15.0 +/- 2.3 microg/g of dry tissue; P < .02) and at 8 weeks in the liver (N, 107.5 +/- 4.3 microg/g of dry tissue; F, 80.9 +/- 3.2 microg/g of dry tissue; P < .01). In conclusion, fructose feeding is accompanied by a significant and selective reduction of Evans blue leakage primarily in skeletal muscle and liver, and transiently in the skin and aorta, consistent with a role for decreased tissue insulin delivery in insulin resistance.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D008297 Male Males
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D004396 Coloring Agents Chemicals and substances that impart color including soluble dyes and insoluble pigments. They are used in INKS; PAINTS; and as INDICATORS AND REAGENTS. Coloring Agent,Dye,Dyes,Organic Pigment,Stain,Stains,Tissue Stain,Tissue Stains,Organic Pigments,Pigments, Inorganic,Agent, Coloring,Inorganic Pigments,Pigment, Organic,Pigments, Organic,Stain, Tissue,Stains, Tissue
D005070 Evans Blue An azo dye used in blood volume and cardiac output measurement by the dye dilution method. It is very soluble, strongly bound to plasma albumin, and disappears very slowly. Azovan Blue,C.I. 23860,C.I. Direct Blue 53,Evan's Blue,Blue, Azovan,Blue, Evan's,Blue, Evans,Evan Blue
D005632 Fructose A monosaccharide in sweet fruits and honey that is soluble in water, alcohol, or ether. It is used as a preservative and an intravenous infusion in parenteral feeding. Levulose,Apir Levulosa,Fleboplast Levulosa,Levulosa,Levulosa Baxter,Levulosa Braun,Levulosa Grifols,Levulosa Ibys,Levulosa Ife,Levulosa Mein,Levulosado Bieffe Medit,Levulosado Braun,Levulosado Vitulia,Plast Apyr Levulosa Mein,Levulosa, Apir,Levulosa, Fleboplast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Chakir, and G E Plante, and P Maheux
June 1956, The Tohoku journal of experimental medicine,
M Chakir, and G E Plante, and P Maheux
September 1985, Microvascular research,
M Chakir, and G E Plante, and P Maheux
January 1983, Clinical and experimental pharmacology & physiology,
M Chakir, and G E Plante, and P Maheux
January 1988, Neurosurgery,
M Chakir, and G E Plante, and P Maheux
December 1981, Journal of neurosurgery,
M Chakir, and G E Plante, and P Maheux
January 1965, Kardiologiia,
M Chakir, and G E Plante, and P Maheux
August 1955, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
M Chakir, and G E Plante, and P Maheux
November 1977, Pflugers Archiv : European journal of physiology,
M Chakir, and G E Plante, and P Maheux
January 1976, Bollettino della Societa italiana di cardiologia,
M Chakir, and G E Plante, and P Maheux
September 1977, Acta physiologica Scandinavica,
Copied contents to your clipboard!