Crystal structure of the receptor-binding domain of alpha 2-macroglobulin. 1998

L Jenner, and L Husted, and S Thirup, and L Sottrup-Jensen, and J Nyborg
Department of Molecular and Structural Biology, University of Aarhus, Denmark.

BACKGROUND The large plasma proteinase inhibitors of the alpha 2-macroglobulin superfamily inhibit proteinases by capturing them within a central cavity of the inhibitor molecule. After reaction with the proteinase, the alpha-macroglobulin-proteinase complex binds to the alpha-macroglobulin receptor, present in the liver and other tissues, and becomes endocytosed and rapidly removed from the circulation. The complex binds to the receptor via recognition sites located on a separate domain of approximately 138 residues positioned at the C terminus of the alpha-macroglobulin subunit. RESULTS The crystal structure of the receptor-binding domain of bovine alpha 2-macroglobulin (bRBD) has been determined at a resolution of 1.9 A. The domain primarily comprises a nine-strand beta structure with a jelly-roll topology, but also contains two small alpha helices. CONCLUSIONS The surface patch responsible for receptor recognition is thought to involve residues located on one of the two alpha helices of the bRBD as well as residues in two of the beta strands. Located on this alpha helix are two lysine residues that are important for receptor binding. The structure of bRBD is very similar to the approximately 100-residue C-terminal domain of factor XIII, a transglutaminase from the blood coagulation system.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D011973 Receptors, LDL Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking. LDL Receptors,Lipoprotein LDL Receptors,Receptors, Low Density Lipoprotein,LDL Receptor,LDL Receptors, Lipoprotein,Low Density Lipoprotein Receptor,Low Density Lipoprotein Receptors,Receptors, Lipoprotein, LDL,Receptor, LDL,Receptors, Lipoprotein LDL
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005176 Factor XIII A fibrin-stabilizing plasma enzyme (TRANSGLUTAMINASES) that is activated by THROMBIN and CALCIUM to form FACTOR XIIIA. It is important for stabilizing the formation of the fibrin polymer (clot) which culminates the coagulation cascade. Coagulation Factor XIII,Factor XIII Transamidase,Fibrin Stabilizing Factor,Fibrinase,Laki-Lorand Factor,Blood Coagulation Factor XIII,Factor 13,Factor Thirteen,Laki Lorand Factor,Factor XIII, Coagulation,Stabilizing Factor, Fibrin,Transamidase, Factor XIII,XIII, Coagulation Factor
D000511 alpha-Macroglobulins Glycoproteins with a molecular weight of approximately 620,000 to 680,000. Precipitation by electrophoresis is in the alpha region. They include alpha 1-macroglobulins and alpha 2-macroglobulins. These proteins exhibit trypsin-, chymotrypsin-, thrombin-, and plasmin-binding activity and function as hormonal transporters. Slow alpha 2-Macroglobulins,alpha 2-Acute Phase Globulins,alpha-Macrofetoproteins,45S RNP,Acute-Phase alpha 1-Protein,Slow alpha 2-Globulin,alpha 1-Acute Phase Globulin,alpha 1-Acute Phase Protein,alpha 1-Macroglobulin,alpha 2-Acute Phase Globulin,alpha-Macrofetoprotein,Acute Phase alpha 1 Protein,RNP, 45S,Slow alpha 2 Globulin,Slow alpha 2 Macroglobulins,alpha 1 Acute Phase Globulin,alpha 1 Acute Phase Protein,alpha 1 Macroglobulin,alpha 1-Protein, Acute-Phase,alpha 2 Acute Phase Globulin,alpha 2 Acute Phase Globulins,alpha 2-Globulin, Slow,alpha 2-Macroglobulins, Slow,alpha Macrofetoprotein,alpha Macrofetoproteins,alpha Macroglobulins
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L Jenner, and L Husted, and S Thirup, and L Sottrup-Jensen, and J Nyborg
January 2000, The Journal of biological chemistry,
L Jenner, and L Husted, and S Thirup, and L Sottrup-Jensen, and J Nyborg
September 1986, FEBS letters,
L Jenner, and L Husted, and S Thirup, and L Sottrup-Jensen, and J Nyborg
October 2000, Protein science : a publication of the Protein Society,
L Jenner, and L Husted, and S Thirup, and L Sottrup-Jensen, and J Nyborg
June 1995, Nature,
L Jenner, and L Husted, and S Thirup, and L Sottrup-Jensen, and J Nyborg
June 2001, The Journal of biological chemistry,
L Jenner, and L Husted, and S Thirup, and L Sottrup-Jensen, and J Nyborg
November 1984, Archives of biochemistry and biophysics,
L Jenner, and L Husted, and S Thirup, and L Sottrup-Jensen, and J Nyborg
September 1996, Archives of biochemistry and biophysics,
L Jenner, and L Husted, and S Thirup, and L Sottrup-Jensen, and J Nyborg
September 2020, Journal of immunoassay & immunochemistry,
L Jenner, and L Husted, and S Thirup, and L Sottrup-Jensen, and J Nyborg
November 1992, FEBS letters,
L Jenner, and L Husted, and S Thirup, and L Sottrup-Jensen, and J Nyborg
April 2009, Journal of molecular biology,
Copied contents to your clipboard!