Taurine efflux and intracellular pH during astrocyte volume regulation. 1998

J E Olson, and R W Putnam, and J A Evers, and N Munoz
Department of Emergency Medicine, Wright State University, Dayton, Ohio 45401, USA.

Cytotoxic cerebral edema is characterized by enlarged astroglial cells. In tissue culture, osmotically swollen astrocytes return toward normal volume over a period of 15-30 min in a process termed regulatory volume decrease (RVD). RVD is due, in part, to net efflux of taurine and other amino acids. Our objective in these studies was to examine changes in astrocyte intracellular pH (pHi) which may be related to taurine loss during RVD. We hypothesized net efflux of anionic taurine abandons a proton inside the cell, thus lowering pHi. Primary cultures of cerebral astrocytes were prepared from neonatal rats pups and grown on glass coverslips. Confluent cells were loaded at 37 degrees C with the fluorescent pH indicator BCECF. Fluorescence intensity ratios for excitation wavelengths of 440 nm and 494 nm (530 nm emission) were computed every 2 sec. Intensity ratios were calibrated to pHi at the end of each experiment using 140 mM KCl plus 8.6 microM nigericin at pH 7.4. pHi was measured in isoosmotic Hepes-buffered saline (290 mOsm) and then in hypoosmotic Hepes-buffered saline (200 mOsm) in the presence of 0.5 mM amiloride. Some solutions also contained 150 microM niflumic acid (NA). Cellular taurine content was determined in parallel studies using HPLC. Changes in pHi were compared between groups using Student's t-test with Bonferroni correction. Significance was assumed if p < 0.05. In isoosmotic saline, mean +/- SEM pHi was 7.58 +/- 0.04 and decreased to 7.35 +/- 0.09 after adding amiloride. Hypoosmotic exposure caused a further drop in pHi of 0.29 +/- 0.03 within 15 min. Recovery of pHi in isoosmotic saline was amiloride-sensitive. Subsequent hypoosmotic exposure after recovery in isoosmotic saline produced a change in pHi which was 81 +/- 9% of the change measured during the initial hypoosmotic exposure. Taurine content decreased from 147 +/- 6 nmol/(mg protein) to 116 +/- 7 nmol(mg protein) during the 15 min hypoosmotic exposure in 0.5 mM amiloride. NA significantly reduced the hypoosmotically induced change in pHi to 0.17 +/- 0.02 while completely blocking taurine loss. Assuming an intracellular buffering power of 13 mM, the NA-sensitive intracellular acidification of cells during hypoosmotic exposure in the presence of 0.5 mM amiloride corresponds to 1.6 mequiv/l additional intracellular H+. This increase in intracellular H+ content is equivalent to approximately 32% of the NA-sensitive loss of taurine. The association of changes in pHi with taurine efflux is supported by these data; however, efflux of other weak acids may contribute to intracellular acidification during astrocyte RVD and a significant portion of taurine must leave the cell with a proton.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D009544 Niflumic Acid An analgesic and anti-inflammatory agent used in the treatment of rheumatoid arthritis. Donalgin,Flunir,Niflactol,Niflugel,Nifluril,Acid, Niflumic
D009995 Osmosis Tendency of fluids (e.g., water) to move from the less concentrated to the more concentrated side of a semipermeable membrane. Osmoses
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000584 Amiloride A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial

Related Publications

J E Olson, and R W Putnam, and J A Evers, and N Munoz
February 1995, Neuroscience letters,
J E Olson, and R W Putnam, and J A Evers, and N Munoz
January 2000, Advances in experimental medicine and biology,
J E Olson, and R W Putnam, and J A Evers, and N Munoz
September 1999, The American journal of physiology,
J E Olson, and R W Putnam, and J A Evers, and N Munoz
January 2003, Advances in experimental medicine and biology,
J E Olson, and R W Putnam, and J A Evers, and N Munoz
March 1994, Biochimica et biophysica acta,
J E Olson, and R W Putnam, and J A Evers, and N Munoz
January 1991, Annals of the New York Academy of Sciences,
J E Olson, and R W Putnam, and J A Evers, and N Munoz
December 1981, Journal of applied physiology: respiratory, environmental and exercise physiology,
J E Olson, and R W Putnam, and J A Evers, and N Munoz
January 2006, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
J E Olson, and R W Putnam, and J A Evers, and N Munoz
June 1996, The Journal of cell biology,
J E Olson, and R W Putnam, and J A Evers, and N Munoz
September 1986, Respiration physiology,
Copied contents to your clipboard!