Effect of temperature on postsynaptic potentials of cat spinal motoneurones. 1976

F R Pierau, and M R Klee, and F W Klussmann

The effect of spinal cord temperature on excitatory postsynaptic potentials (EPSP) and inhibitory postsynaptic potentials (IPSP) were measured by means of intracellular recordings from lumbar motoneurones of 43 cats. While body temperature and oil bath temperature were maintained between 37 and 38 degrees C, the temperature of the spinal segment under investigation was changed separately in the range between 30 and 42 degrees C. Cooling consistently produced an increase in amplitude and duration of both, mono- and poly-synaptic EPSPs and recurrent and direct IPSPs. Warming caused the opposite effect. The input resistance of the motoneurones was inversely related to the spinal cord temperature, while the latency of action potentials produced by intracellular injection of outward current was directly and exponentially related to spinal temperature. Although the data do not provide a quantitative differentiation of pre- versus postsynaptic temperature effects, they are consistent with the notion that temperature dependent changes on postsynaptic membrane properties contribute to the observed PSP changes. It is further suggested that similar postsynaptic temperature effects may be concerned in temperature sensitivity of proposed specific central neurones.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

F R Pierau, and M R Klee, and F W Klussmann
January 1969, Federation proceedings,
F R Pierau, and M R Klee, and F W Klussmann
January 1968, Folia biologica,
F R Pierau, and M R Klee, and F W Klussmann
February 1984, The Journal of physiology,
F R Pierau, and M R Klee, and F W Klussmann
March 1971, Electroencephalography and clinical neurophysiology,
F R Pierau, and M R Klee, and F W Klussmann
April 1969, The Journal of physiology,
F R Pierau, and M R Klee, and F W Klussmann
December 1981, The Journal of physiology,
F R Pierau, and M R Klee, and F W Klussmann
December 1971, Brain research,
F R Pierau, and M R Klee, and F W Klussmann
January 1983, Advances in biochemical psychopharmacology,
Copied contents to your clipboard!