A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. 1998

D P Tieleman, and H J Berendsen
BIOSON Research Institute and Laboratory of Biophysical Chemistry, University of Groningen, The Netherlands. tieleman@chem.rug.nl

In this paper we study the properties of pores formed by OmpF porin from Escherichia coli, based on a molecular dynamics simulation of the OmpF trimer, 318 palmitoyl-oleoyl-phosphatidylethanolamine lipids, 27 Na+ ions, and 12,992 water molecules. After equilibration and a nanosecond production run, the OmpF trimer exhibits a C-alpha root mean square deviation from the crystal structure of 0.23 nm and a stable secondary structure. No evidence is found for large-scale motions of the L3 loop. We investigate the pore dimensions, conductance, and the properties of water inside the pore. This water forms a complicated pattern, even when averaged over 1 ns of simulation time. Around the pore constriction zone the water dipoles are highly structured in the plane of the membrane, oriented by the strong transversal electric field. In addition, there is a net orientation along the pore axis pointing from the extracellular to the intracellular side of the bilayer. The diffusion coefficients of water inside the pore are greatly reduced compared to bulk. We compare our results to results from model pores (Breed et al., 1996. Biophys. J. 70:1 643-1 661; Sansom et al. 1997. Biophys. J. 73:2404-241 5) and discuss implications for further theoretical work.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

D P Tieleman, and H J Berendsen
September 1985, European journal of biochemistry,
D P Tieleman, and H J Berendsen
March 1979, Biochimica et biophysica acta,
D P Tieleman, and H J Berendsen
September 1991, Journal of bacteriology,
D P Tieleman, and H J Berendsen
June 2012, Journal of structural biology,
D P Tieleman, and H J Berendsen
January 1990, Proceedings of the National Academy of Sciences of the United States of America,
D P Tieleman, and H J Berendsen
April 1995, Science (New York, N.Y.),
D P Tieleman, and H J Berendsen
January 2007, Biochemical and biophysical research communications,
D P Tieleman, and H J Berendsen
October 1993, Journal of molecular biology,
Copied contents to your clipboard!