Transdermal delivery of heparin by skin electroporation. 1995

M R Prausnitz, and E R Edelman, and J A Gimm, and R Langer, and J C Weaver
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Therapeutic uses of compounds produced by biotechnology are presently limited by the lack of noninvasive methods for continuous administration of biologically-active macromolecules. Transdermal delivery would be an attractive solution, except macromolecules have not previously been delivered clinically across human skin at therapeutic rates. To increase transport of a highly-charged macromolecule (heparin), high-voltage pulses believed to cause electroporation were applied to skin. Using this approach, transdermal heparin transport across human skin in vitro occurred at therapeutic rates (100-500 micrograms/cm2h), reported to be sufficient for systemic anticoagulation. In contrast, fluxes caused by low-voltage iontophoresis having the same time-averaged current were an order of magnitude lower. Heparin transported across the skin was biologically active, but with only one eighth the anticoagulant activity of heparin in the donor compartment due to preferential transport of small (less active) heparin molecules. Flux, activity, and transport number data together suggest that high-voltage pulsing creates transient changes in skin microstructure which do not occur during iontophoresis. Safety issues are discussed.

UI MeSH Term Description Entries
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000279 Administration, Cutaneous The application of suitable drug dosage forms to the skin for either local or systemic effects. Cutaneous Drug Administration,Dermal Drug Administration,Drug Administration, Dermal,Percutaneous Administration,Skin Drug Administration,Transcutaneous Administration,Transdermal Administration,Administration, Dermal,Administration, Transcutaneous,Administration, Transdermal,Cutaneous Administration,Cutaneous Administration, Drug,Dermal Administration,Drug Administration, Cutaneous,Skin Administration, Drug,Administration, Cutaneous Drug,Administration, Dermal Drug,Administration, Percutaneous,Administrations, Cutaneous,Administrations, Cutaneous Drug,Administrations, Dermal,Administrations, Dermal Drug,Administrations, Percutaneous,Administrations, Transcutaneous,Administrations, Transdermal,Cutaneous Administrations,Cutaneous Administrations, Drug,Cutaneous Drug Administrations,Dermal Administrations,Dermal Drug Administrations,Drug Administrations, Cutaneous,Drug Administrations, Dermal,Drug Skin Administrations,Percutaneous Administrations,Skin Administrations, Drug,Skin Drug Administrations,Transcutaneous Administrations,Transdermal Administrations
D000925 Anticoagulants Agents that prevent BLOOD CLOTTING. Anticoagulant Agent,Anticoagulant Drug,Anticoagulant,Anticoagulant Agents,Anticoagulant Drugs,Anticoagulation Agents,Indirect Thrombin Inhibitors,Agent, Anticoagulant,Agents, Anticoagulant,Agents, Anticoagulation,Drug, Anticoagulant,Drugs, Anticoagulant,Inhibitors, Indirect Thrombin,Thrombin Inhibitors, Indirect
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D018274 Electroporation A technique in which electric pulses, in kilovolts per centimeter and of microsecond-to-millisecond duration, cause a loss of the semipermeability of CELL MEMBRANES, thus leading to ion leakage, escape of metabolites, and increased uptake by cells of drugs, molecular probes, and DNA. Depending on the dosage, the formation of openings in the cell membranes caused by the electric pulses may or may not be reversible. Electric Field-Mediated Cell Permeabilization,Irreversible Electroporation,Reversible Electroporation,Electropermeabilisation,Electric Field Mediated Cell Permeabilization,Electroporation, Irreversible,Electroporation, Reversible

Related Publications

M R Prausnitz, and E R Edelman, and J A Gimm, and R Langer, and J C Weaver
August 1998, Journal of controlled release : official journal of the Controlled Release Society,
M R Prausnitz, and E R Edelman, and J A Gimm, and R Langer, and J C Weaver
March 2003, Journal of controlled release : official journal of the Controlled Release Society,
M R Prausnitz, and E R Edelman, and J A Gimm, and R Langer, and J C Weaver
January 2000, Pharmaceutical research,
M R Prausnitz, and E R Edelman, and J A Gimm, and R Langer, and J C Weaver
January 2000, Methods in molecular medicine,
M R Prausnitz, and E R Edelman, and J A Gimm, and R Langer, and J C Weaver
March 2004, Advanced drug delivery reviews,
M R Prausnitz, and E R Edelman, and J A Gimm, and R Langer, and J C Weaver
January 1999, Advanced drug delivery reviews,
M R Prausnitz, and E R Edelman, and J A Gimm, and R Langer, and J C Weaver
November 1994, Pharmaceutical research,
M R Prausnitz, and E R Edelman, and J A Gimm, and R Langer, and J C Weaver
September 2010, International journal of pharmaceutics,
M R Prausnitz, and E R Edelman, and J A Gimm, and R Langer, and J C Weaver
August 2004, Journal of controlled release : official journal of the Controlled Release Society,
M R Prausnitz, and E R Edelman, and J A Gimm, and R Langer, and J C Weaver
July 2000, International journal of pharmaceutics,
Copied contents to your clipboard!