Mutations affecting cooperative DNA binding of phage HK022 CI repressor. 1998

C Mao, and J W Little
Department of Biochemistry, University of Arizona, Tucson 85721, USA.

Cooperative protein-DNA interactions play critical roles in gene regulation in all organisms. Among the best-studied cooperative interactions is that of phage lambda repressor, which binds cooperatively to two adjacent operators. Similar cooperative interactions are also shown by several other lambdoid phage repressors, including HK022 CI repressor, which we study here. This protein has a much higher degree of cooperativity than seen with lambda repressor, and previous evidence has suggested that cooperativity may play roles in HK022 gene regulation that have no parallel in lambda. We have isolated several cooperativity or Coop- mutations in HK022 cI. These mutant proteins were partially defective in vivo for binding to two adjacent operators, but normal or nearly so for binding to a single operator. Two mutations showed mutual suppression, in that the double mutation had wild-type behavior. Analysis of several purified mutant proteins showed that they were also defective for cooperative binding in vitro. Unexpectedly, the mutant proteins showed an altered pattern of in vitro binding to DNA at non-operator sites. Several of them also increased the rate of specific repressor cleavage. We propose a conformational model in which the various functions of the wild-type protein are carried out by differing conformations; these conformations are normally in balance, and the mutations perturb this balance.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D015967 Gene Expression Regulation, Viral Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses. Regulation of Gene Expression, Viral,Viral Gene Expression Regulation,Regulation, Gene Expression, Viral
D054334 Viral Regulatory and Accessory Proteins A broad category of viral proteins that play indirect roles in the biological processes and activities of viruses. Included here are proteins that either regulate the expression of viral genes or are involved in modifying host cell functions. Many of the proteins in this category serve multiple functions. Viral Accessory Proteins,Viral Regulatory Proteins,Regulatory Proteins, Viral,Accessory Proteins, Viral,Proteins, Viral Accessory,Proteins, Viral Regulatory
D018983 DNA Footprinting A method for determining the sequence specificity of DNA-binding proteins. DNA footprinting utilizes a DNA damaging agent (either a chemical reagent or a nuclease) which cleaves DNA at every base pair. DNA cleavage is inhibited where the ligand binds to DNA. (from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Footprints, DNA,DNA Footprint,DNA Footprintings,DNA Footprints,Footprint, DNA,Footprinting, DNA,Footprintings, DNA

Related Publications

C Mao, and J W Little
April 1993, Journal of molecular biology,
C Mao, and J W Little
November 2007, Proceedings of the National Academy of Sciences of the United States of America,
C Mao, and J W Little
May 1996, The Journal of biological chemistry,
C Mao, and J W Little
November 1971, Journal of molecular biology,
C Mao, and J W Little
December 1982, Journal of molecular biology,
C Mao, and J W Little
January 1986, Nature,
Copied contents to your clipboard!