Structure of the Drosophila projectin protein: isoforms and implication for projectin filament assembly. 1998

J Daley, and R Southgate, and A Ayme-Southgate
Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA.

The protein composition of the various muscle types in Drosophila melanogaster has been studied quite thoroughly and the analysis has revealed many differences involving the usage of muscle specific isoforms of a given protein, as well as the presence of proteins restricted to one muscle type. Drosophila projectin, the giant protein component of the third filament is quite unusual as it not only shows specific isoforms in various muscle types, but these isoforms are located at different sarcomeric locations, I band in the IFM and A band in synchronous muscles. This may suggest distinct functions for the projectin protein in various muscles, as well as a different set of protein interactions for each projectin isoform. Projectin is encoded by a single gene and the isoforms were proposed to be the result of alternative splicing of a primary transcript. Here, we report the nearly complete sequence of Drosophila projectin, as well as the possible splicing patterns used to generate different isoforms. The overall domain organization in projectin is composed of repeated motifs I and II in a few specific patterns, similar to its Caenorhabditis homolog, twitchin. Sequence similarity between twitchin and projectin further suggests how some domains may possibly be important for protein interactions and/or functions. Alternative splicing operates at the COOH terminus, leading to a shorter projectin protein lacking some of the terminal motifs II and unique sequence. These isoforms are discussed in view of projectin differential size and localization.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002148 Calmodulin-Binding Proteins Proteins which bind calmodulin. They are found in many tissues and have a variety of functions including F-actin cross-linking properties, inhibition of cyclic nucleotide phosphodiesterase and calcium and magnesium ATPases. Caldesmon,Calspectin,CaM-BP(80),Caldesmon (77),Calmodulin Binding Proteins,Proteins, Calmodulin-Binding
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

J Daley, and R Southgate, and A Ayme-Southgate
January 2000, Advances in experimental medicine and biology,
J Daley, and R Southgate, and A Ayme-Southgate
April 2004, BMC cell biology,
J Daley, and R Southgate, and A Ayme-Southgate
March 2017, Journal of molecular biology,
J Daley, and R Southgate, and A Ayme-Southgate
July 1998, The Journal of biological chemistry,
J Daley, and R Southgate, and A Ayme-Southgate
February 1993, Current opinion in cell biology,
J Daley, and R Southgate, and A Ayme-Southgate
October 2017, Biophysical reviews,
J Daley, and R Southgate, and A Ayme-Southgate
February 1995, The Journal of cell biology,
J Daley, and R Southgate, and A Ayme-Southgate
November 2001, Journal of molecular biology,
J Daley, and R Southgate, and A Ayme-Southgate
December 2011, Proceedings of the National Academy of Sciences of the United States of America,
J Daley, and R Southgate, and A Ayme-Southgate
January 1997, International review of cytology,
Copied contents to your clipboard!