Comparison of atypical beta3-adrenoceptor agonists with their respective metabolic activities in rat white adipocytes. 1998

Y Ohsaka, and T Murakami, and T Yoshida, and Y Tokumitsu
Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.

The metabolic activities of four types of beta3-adrenoceptor (AR) agonists, BRL35135A, BRL28410, ICI215001 and CL316243, were compared with those of other beta1- and beta2-AR agonists in rat white adipocytes. All the beta3-AR agonists caused cAMP formation, free fatty acid release and 2-deoxyglucose uptake; the maximum activity levels were similar except for ICI215001, which was lower. However, the magnitude of potency and selectivity of these agonists differed. The most potent and selective beta3-agonist was CL316243. Metabolic activities and Northern blotting showed that there were three beta-AR subtypes that were coupled to adenylyl cyclase and contributed to the induction of lipolysis and glucose uptake. The rank order of the amounts of beta-AR subtypes was beta3 >>beta1> beta2. However, the physiological functions of beta-AR subtypes were essentially similar in rat white adipocytes. On the other hand, cAMP accumulation and Northern blotting showed that human adipocytes predominantly contained beta2-AR, with far lower levels of beta1- and beta3-ARs. These findings suggested that the beta3-AR plays an important role in energy metabolism and thermogenesis in which cross talk exists between beta1- and beta3-ARs in rat adipocytes, while beta2-AR is the most important for the lipolysis regulation in human subcutaneous adipocytes.

UI MeSH Term Description Entries
D008297 Male Males
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Y Ohsaka, and T Murakami, and T Yoshida, and Y Tokumitsu
January 1990, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
Y Ohsaka, and T Murakami, and T Yoshida, and Y Tokumitsu
September 1999, Journal of lipid research,
Y Ohsaka, and T Murakami, and T Yoshida, and Y Tokumitsu
January 1997, British journal of pharmacology,
Y Ohsaka, and T Murakami, and T Yoshida, and Y Tokumitsu
June 2005, Naunyn-Schmiedeberg's archives of pharmacology,
Y Ohsaka, and T Murakami, and T Yoshida, and Y Tokumitsu
March 2016, Physiology international,
Y Ohsaka, and T Murakami, and T Yoshida, and Y Tokumitsu
July 1998, European journal of pharmacology,
Y Ohsaka, and T Murakami, and T Yoshida, and Y Tokumitsu
December 2010, Korean journal of urology,
Y Ohsaka, and T Murakami, and T Yoshida, and Y Tokumitsu
February 1993, Biochemical pharmacology,
Copied contents to your clipboard!