Co-activators and co-repressors in the integration of transcriptional responses. 1998

J Torchia, and C Glass, and M G Rosenfeld
Howard Hughes Medical Institute, University of California San Diego 92093, USA. jtorchia@julian.uwo.ca

The nuclear hormone receptors are DNA binding transcription factors that are regulated by binding of ligands, switching them from an inactive or repressive state to gene-activating functions. Recent evidence supports the hypothesis that many nuclear receptors switch, in a ligand-dependent manner, between binding of a multicomponent co-repressor complex containing histone deacetyltransferase activity, and binding of a co-activator complex containing factors with histone acetyltransferase activity that are further regulated by diverse signal transduction pathways. The identification of these limiting co-repressor and co-activator complexes and their specific interaction motifs, in concert with solution of the structures of the receptor ligand-binding domain in apo (empty) and ligand bound forms, indicates a common molecular mechanism by which these factors activate and repress gene transcription.

UI MeSH Term Description Entries
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D006655 Histone Deacetylases Deacetylases that remove N-acetyl groups from amino side chains of the amino acids of HISTONES. The enzyme family can be divided into at least three structurally-defined subclasses. Class I and class II deacetylases utilize a zinc-dependent mechanism. The sirtuin histone deacetylases belong to class III and are NAD-dependent enzymes. Class I Histone Deacetylases,Class II Histone Deacetylases,HDAC Proteins,Histone Deacetylase,Histone Deacetylase Complexes,Complexes, Histone Deacetylase,Deacetylase Complexes, Histone,Deacetylase, Histone,Deacetylases, Histone
D000123 Acetyltransferases Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1. Acetyltransferase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015534 Trans-Activators Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins. Nuclear Trans-Acting Factor,Trans-Acting Factors,Trans-Acting Factor,Trans-Activator,Transactivator,Transactivators,Factor, Nuclear Trans-Acting,Factor, Trans-Acting,Factors, Trans-Acting,Nuclear Trans Acting Factor,Trans Acting Factor,Trans Acting Factors,Trans Activator,Trans Activators,Trans-Acting Factor, Nuclear
D051548 Histone Acetyltransferases Enzymes that catalyze acyl group transfer from ACETYL-CoA to HISTONES forming CoA and acetyl-histones. Histone Acetylase,Histone Acetyltransferase,Acetylase, Histone,Acetyltransferase, Histone,Acetyltransferases, Histone
D018160 Receptors, Cytoplasmic and Nuclear Intracellular receptors that can be found in the cytoplasm or in the nucleus. They bind to extracellular signaling molecules that migrate through or are transported across the CELL MEMBRANE. Many members of this class of receptors occur in the cytoplasm and are transported to the CELL NUCLEUS upon ligand-binding where they signal via DNA-binding and transcription regulation. Also included in this category are receptors found on INTRACELLULAR MEMBRANES that act via mechanisms similar to CELL SURFACE RECEPTORS. Cytoplasmic Receptor,Cytoplasmic and Nuclear Receptors,Cytosolic and Nuclear Receptors,Hormone Receptors, Cytoplasmic,Hormone Receptors, Nuclear,Nuclear Hormone Receptor,Nuclear Receptor,Nuclear and Cytoplasmic Receptors,Cytoplasmic Hormone Receptors,Cytoplasmic Receptors,Cytosol and Nuclear Receptors,Intracellular Membrane Receptors,Nuclear Hormone Receptors,Nuclear Receptors,Receptors, Cytoplasmic,Receptors, Cytosol and Nuclear,Receptors, Cytosolic and Nuclear,Receptors, Intracellular Membrane,Receptors, Nuclear,Receptors, Nuclear and Cytoplasmic,Hormone Receptor, Nuclear,Membrane Receptors, Intracellular,Receptor, Cytoplasmic,Receptor, Nuclear,Receptor, Nuclear Hormone,Receptors, Cytoplasmic Hormone,Receptors, Nuclear Hormone
D029701 Saccharomyces cerevisiae Proteins Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes. Baker's Yeast Proteins,S cerevisiae Proteins

Related Publications

J Torchia, and C Glass, and M G Rosenfeld
May 2000, Steroids,
J Torchia, and C Glass, and M G Rosenfeld
May 2006, Journal of cellular biochemistry,
J Torchia, and C Glass, and M G Rosenfeld
April 2001, The international journal of biochemistry & cell biology,
J Torchia, and C Glass, and M G Rosenfeld
May 2014, Neuropharmacology,
J Torchia, and C Glass, and M G Rosenfeld
April 1991, Molecular and cellular biology,
J Torchia, and C Glass, and M G Rosenfeld
January 2016, Methods in molecular biology (Clifton, N.J.),
J Torchia, and C Glass, and M G Rosenfeld
September 2023, Cell systems,
J Torchia, and C Glass, and M G Rosenfeld
January 1997, Recent progress in hormone research,
J Torchia, and C Glass, and M G Rosenfeld
February 1996, European journal of endocrinology,
Copied contents to your clipboard!